

Geoquímica y geocronología de las rocas ígneas de la Formación Cachi, en el Valle Calchaqui, Argentina

Hubert Miller¹, Anette Lork¹, Alejandro J. Toselli², Florencio G. Aceñolaza²

Abstract; IGNEOUS ROCKS OF CACHI FORMATION: GEOCHEMISTRY AND GEOCHRONOLO-GY IN THE CALCHAOUI VALLEY, ARGENTINA. The basement of the Palermo, Cachi and Molinos ranges, in Salta province, are part of the Eastern Cordillera and is composed by a meta-sedimentary basement corresponding to the Puncoviscana Formation, with a maximum sedimentation age of 527 My, that is the culmination of Ediacaran-Terreneuvian period. This formation is affected by magmatic-metamorphic events that gives rise to the tonalitic-trondhjemitic and granodioritic-granitic intrusives of Cachi Formation and too the gneisses-migmatites, phyllites and spotted schists of La Paya Complex. The ages of the intrusives and associated metamorphites are between 488 and 453 My (Upper Cambrian - Upper Ordovician), which were determined by U-Pb zircons and monazites. Likewise, the 87Sr/86Sr ratios values varies from 0.70330 to 0.70394 are applied to the genetic interpretation of the intrusives, while the rocks of the Puncoviscana Formation register relations between 0.71275 and 0.71327. The igneous rocks are formed essentially by feldspars, quartz, biotite and pyroxenes. The wide variation of the plagioclase compositions, from labradorite to albite, evidences the rapid up rise and cooling of the plutons, as well as the survival of the pyroxenes. The tonalite-trondhjemite rocks are low in potassium and with ratios K,O/Na,O<1; while granodiorite-granite rocks are high in potassium, with K₂O/Na₂O>1 ratios. The distribution of chemical data projected in different diagrams, discards a common origin of the magmatic associations, which could not have been formed by fractional crystallization phenomena, but supports the hypothesis of different sedimentary protoliths with probably subordinate participation of the mantle material, such as Rio Blanco sub-alkaline basalts, with a somewhat older age. This magmatic association is unique in the Famatinian Cycle and would respond to a transtensive tectonics, with little or no convergence and related to an active continental margin during the development of a continental island-arc.

Resumen: Las sierras de Palermo, Cachi y Molinos, de la provincia de Salta, forman parte de la Cordillera Oriental que está constituida por un basamento meta-sedimentario correspondiente a la Formación Puncoviscana, con edad máxima de sedimentación de 527 Ma la cual, es posteriormente afectada por un evento deformativo-magmático-metamórfico que se conoce como orogenia Tilcárica que constituye la culminación del lapso Ediacarano-Terreneuviano. Con posterioridad, durante un nuevo evento orogénico se originan los intrusivos tonalítico-trondhjemíticos y granodiorítico-graníticos de la Formación Cachi, así como los gneises- migmatitas y filitas-esquistos moteados del Complejo La Paya. Las edades de los intrusivos y las metamorfitas asociadas están comprendidas entre 488 y 453 Ma (Cámbrico Superior - Ordovícico Superior), las cuales fueron determinadas por U-Pb en circones y monacitas. Por otra parte, se utiliza en la interpretación genética de los intrusivos las relaciones 87Sr/86Sr cuyos valores van de 0,70330 a 0,70394, en tanto que las rocas de la Formación Puncoviscana registran relaciones entre 0,71275 y 0,71327. Las rocas ígneas están constituidas esencialmente por feldespatos y cuarzo con biotita y piroxenos. La amplia variación en la composición de las plagioclasas de labradorita a albita, evidencia el rápido ascenso y enfriamiento de los plutones, así como la supervivencia de los piroxenos. Las tonalitas-trondhjemitas son bajas en potasio y con relaciones K₂O/Na₂O <1; en tanto que las granodioritas-granitos son altas en potasio, con relaciones K,O/Na,O >1. La distribución de los datos químicos proyectados en diferentes diagramas, descarta un origen común de las asociaciones, que no se podrían haber formado por fenómenos de cristalización fraccionada, sino que apoya la hipótesis de protolitos sedimentarios diferentes con partici-

¹⁾ Department für Geo- und Umweltwissenschaften, Luisenstrasse 37, D-80333, Munich, Germany.

²⁾ INSUGEO, CONICET-UNT: insugeohm@tucbbs.com.ar. Miguel Lillo 205, 4000 S.M. de Tucumán, Argentina.

pación subordinada de material mantélico, como podrían ser los basaltos sub-alcalinos de Río Blanco, con una edad algo mayor. A este tipo de rocas los consideramos como posibles precursores de este magmatismo y junto con las trondhjemitas Tres Tetas representarían los magmas más primitivos de esta suite magmática. Esta asociación de tonalitas-trondhjemitas y granodioritas-granitos, es única en el Ciclo Famatiniano y respondería a una tectónica transtensiva, con escasa o nula convergencia y relacionada a un borde continental activo durante el desarrollo de un arco de islas continental.

Key words: Tonalites-trondhjemites and granodiorites-granites. Cachi Formation. La Paya Complex. Pampean/Famatinian Cycles.

Palabras clave: Tonalitas-trondhjemitas y granodioritas-granitos. Formación Cachi. Complejo La Paya. Ciclos Pampeano/Famatiniano.

Ubicación, introducción y objetivos

La región estudiada, cubre los faldeos orientales de las sierras de Palermo, Cachi y extremo norte de Molinos, en el ámbito de la Cordillera Oriental, hasta el valle Calchaquí, ubicándose al oeste de la RN 40 que constituye su límite oriental. El sector está comprendido entre, un poco al N de la localidad de La Poma hasta la zona de La Angostura, a lo largo de aproximadamente 100 km en dirección N-S, entre las latitudes 24°40' a 25°30'S (Figura 1). Los afloramientos están constituidos esencialmente por basamento metamórfico representado por las meta-sedimentitas de la Formación Puncoviscana que se ha depositado en el lapso Ediacarano-Terreneuviano. El mismo, fue intruido por los plutones Ordovícicos de la Formación Cachi, los cuales se relacionan genética y temporalmente mente con las metamorfitas del Complejo La Pava.

La investigación que se lleva a cabo cubre aspectos petrográficos, geoquímicos y geocronológicos, utilizando determinaciones mineralógicas mediante microscopía tradicional y microsonda, así como análisis químicos de elementos mayores, menores, trazas y tierras raras.

Las edades fueron determinadas mediante isotopía U-Pb convencional sobre circones y monacitas, con el apoyo de isótopos de estroncio e isócronas Rb-Sr, que permiten ajustar la edad de las rocas intrusivas y de su entorno metamórfico. Los estudios incluyen también datos geológicos regionales y estructurales, que permiten correlacionar temporalmente a los diferentes grupos litológicos para tratar de reconstruir la evolución del basamento ígneo-metamórfico de los Andes Centrales en el noroeste argentino; así como la interpretación de la asociación única en el desarrollo del Ciclo Famatiniano, de trondhjemitas-tonalitas con granodioritas-granitos.

Entorno geológico y antecedentes

Las sierras de Palermo, Cachi y Molinos han sido largamente estudiadas en sus aspectos estratigráficos y cuya unidad más antigua es el basamento metamórfico representado por la Formación Puncoviscana. El nombre fue acuñado por Turner (1960) en la sierra de Santa Victoria y posteriormente es utilizado también para todo el basamento meta-sedimentario de la Cordillera Oriental (Turner, 1972). El término Formación La Pava fue acuñado por Aceñolaza y Toselli (1976) y posteriormente designado como Complejo La Paya (Toselli y Rossi de Toselli, 1990a-b) para el conjunto litológico formado por esquistos moteados, gneises y migmatitas, productos de mayor metamorfismo, que transformó a los meta-sedimentos de la Formación Puncoviscana. Finalmente a los intrusivos plutónicos que intruyen en las metamorfitas, se agrupan con el nombre de Formación Cachi. Arealmente, el Complejo La Paya constituye el 54% de los afloramientos, la Formación Puncoviscana el 34% y los intrusivos de la Formación Cachi con sólo el 12% de la superficie.

Figura 1. Mapa geológico de las sierras de Palermo, Cachi y Molinos, Cordillera Oriental NO-argentino con las localidades de estudio de rocas ígneas y metamórficas. 1- Aguas Calientes. 2- Tres Tetas. 3- El Alto. 4- La Paya. 5- Las Cabritas. 6- Cachi.
7- Vallecito. 8- El Brealito. 9- Incauca. 10- Las Pampitas. No se han incluido los intrusivos de Finca Colomé, La Angostura y Purnayaco, situados más al sur. / Figure 1. Simplified geological map of Palermo, Cachi and Molinos ranges with location of igneous and metamorphic rocks. 1- Aguas Calientes. 2- Tres Tetas. 3- El Alto. 4- La Paya. 5- Las Cabritas. 6- Cachi. 7- Vallecito. 8- El Brealito. 9- Incauca.
10- Las Pampitas. Finca Colomé, La Angostura and Pumayaco intrusives are not included.

Entre los autores que trabajaron intensamente en esta región deben mencionarse: Salfity *et al.* (1975); Moya y Salfity (1982); Turner y Mon (1979); Ježek (1990); Mon y Hongn (1988, 1996); Méndez *et al.* (2006); Mon *et al.* (2017) etc. Mientras que los aspectos geocronológicos fueron desarrollados entre otros por: Borrello (1969, 1971); Halpern y Latorre (1973); Aceñolaza y Toselli (1981); Coira *et al.* (1982); Galliski (1983); Hongn y Seggiaro (2001); Sola *et al.* (2006); Hauser (2011).

Ciclo Pampeano - Formación Puncoviscana

Las rocas sedimentarias silico-clásticas constituidas por pelitas y psamitas con baja madurez constituyen la Formación Puncoviscana. Las mismas se habrían originado en respuesta a un transporte sedimentario relativamente breve sin procesos mayores de reciclaje, que no permitió la maduración del material, ni alteración avanzada, que se refleja en los clastos de feldespatos frescos o con débil alteración. Las rocas de esta formación son de grano medio a fino y están pobremente seleccionadas, con altos contenidos de matriz, que hacen difícil realizar la cuantificación de los minerales, por lo que su caracterización se realiza esencialmente utilizando diagramas geoquímicos y técnicas de rayos-X.

El contenido de trazas fósiles corresponde a asociaciones de *Nereites*, que son coherentes con las edades ediacaranas obtenidas a partir de los circones detríticos y en concordancia con el paleo-ambiente sedimentario, el cual es más antiguo que los niveles que contienen *Oldhamia* que es típica para el Terreneuviano, pero que no ha sido encontrada en estas sierras.

Las secuencias de la Formación Puncoviscana, han sido modificadas por fenómenos térmico-deformativos de diferentes intensidades, que no permiten establecer con seguridad los espesores reales y relaciones de las secuencias meta-sedimentarias, aunque la temperatura alcanzada, siempre ha sido baja, correspondiente a la Facies Sub-esquistos Verdes y sólo excepcionalmente alcanza a la Facies Esquistos Verdes.

Las rocas de esta formación, presentan rasgos geoquímicos derivados de rocas sedimentarias cuarzosas e ígneas ácidas, que pertenecen a la corteza continental superior, las cuales conservan muchos de sus caracteres originales (Toselli y Rossi de Toselli, 1990a). Suelen presentar delgados niveles tobáceos intercalados en las secuencias, como los descritos por Omarini y Alonso (1987) al NE de Cachi y por Esyola *et al.* (2011) en la Sierra de Santa Victoria. Asimismo, son importantes los contenidos en circones detríticos como los estudiados por Lork *et al.* (1990, 1991) con edades U-Pb de 583 y 527 Ma, en la sierra de Cachi.

Ciclo Famatiniano

Complejo La Paya

En los afloramientos del Complejo La Paya se distinguen dos grupos litológicos diferentes. Uno, típico del metamorfismo de contacto, constituido por filitas moteadas, esquistos moteados y esquistos nodulares; mientras que el segundo grupo está constituido por gneises y migmatitas, que se habrían formado en respuesta al ascenso de domos térmicos asociados con los plutones y relacionados con la fuerte deformación.

Los esquistos moteados y nodulares, son de colores grises a verdosas, con brillo satinado, conservan aún cierta estratificación original y es común el desarrollo de venas cuarzosas que ha menudo desarrollan pliegues ptigmáticos. Estos en general se restringen a las inmediaciones de los contactos con los intrusivos y están representados por esquistos oscuros, cuarzo-micáceos con motas y nódulos de clorita, biotita y cordierita, con desarrollo de esquistosidad bien definida. Las filitas moteadas corresponden a la Facies Esquistos Verdes, que son el resultado del efecto térmico de los intrusivos, constituyendo zonas de transición a la Formación Puncoviscana. Adams et al. (1990) obtuvo edades K-Ar sobre roca total, de 451 - 472 Ma, en la zona de Rancagua, para el metamorfismo de "Muy Bajo Grado o Facies Sub-esquistos Verdes", que se relaciona con las intrusiones de la misma edad.

Los gneises y migmatitas, de granulometría mediana, se desarrollan regionalmente en las inmediaciones o envolviendo a las áreas de contacto de los intrusivos y corresponden a la Facies Anfibolitas. Se caracterizan por sus colores claros y composición cuarzo-feldespática. Poseen desarrollo marcado de bandeado composicional, conteniendo con frecuencia nódulos de cordierita junto a la biotita dominante y moscovita.

Formación Cachi

Este nombre formacional fue propuesto por Turner (1960, 1961) para caracterizar a los intrusivos de los Nevados de Palermo y de Cachi, a los que asignó edad precámbrica, aunque con posterioridad diversos autores demostraron que pertenecen al Ordovícico.

Asimismo, la naturaleza y edad de las trondhjemitas de estas sierras, fueron investigadas por Galliski (1981); Galliski y Miller (1989); Galliski *et al.* (1990); Lork *et al.* (1989); Schön y Miller (1989); Schön (1991); Lork y Bahlburg (1993); Toselli y Rossi (1990); Mon *et al.* (2017) y Méndez *et al.* (2006). Por su parte, el cortejo de pegmatitas y su mineralización, que fueron estudiadas por Galliski (1981) y Blasco y Zappettini (1995) se inyectan en las metamorfitas de bajo grado y genéticamente se asocian con el mismo evento tectónico-metamórfico que generó al Complejo La Paya. La Formación Cachi, está constituida por dos grupos ígneos sincrónicos estrechamente relacionados, uno representado por T-T (trondhjemitas-tonalitas), y otro por G-G (granitos-granodioritas y localmente pegmatitas), que definen suites magmáticas bi-modales, que están claramente representadas en el diagrama de Arth *et al.* (1978) (Figura 2A), que se complementa con el diagrama de Barker y Arth (1976), los cuales separan a las dos tendencias evolutivas, una la que corresponde a las T-T, que es diferente de la tendencia calco-alcalina de las G-G (Figura 2B).

Las dos asociaciones presentan diferencias significativas en su composición modal, que reflejan sus contrastes químicos y diferente participación de fluidos. A pesar de lo cual, ambos grupos muestran tendencias evolutivas ácidas leucocráticas análogas, con colores grises a blanquecinos, que evidencian que su origen habría estado relacionado con anomalías en el manto y fusión parcial cortical diferencial, que habrían controlado la

Figura 2. A: Diagrama normativo, Albita-anortita-ortosa (Ab-An-Or) de Barker y Arth (1976), que separa los campos de granitos, trondhjemitas, tonalitas, granodioritas y cuarzo-monzonitas. B: Diagrama "CaO-Na₂O-K₂O", mostrando dos tendencias evolutivas de las suites magmáticas: calco-alcalina (línea de puntos) y trondhjemítica-tonalítica (línea continua). Cuadro con referencias: A: T-T El Hueco. B: T-T El Alto. C: Basalto Río Blanco. D: T-T Vallecito. E: G-G La Paya. F: G-G La Angostura. G: G-G Colomé. H: T-T- Tres Tetas. I: G-G Incauca. J: T-T- Cachi. K: G-G El Brealito. L: G-G. Las Cabritas. M: G-G Pumayaco. (T-T: tonalita-trondhjemita; G-G: granodiorita-granito). / Figure 2. A: Albite-anorthite-ortose (Ab-An-Or) normative diagram, after Barker and Arth (1976), with discrimination fields of: granite, trondhjemite, tonalite, granodiorite and quartz-monzonite. B: Diagram "CaO-Na₂O-K₂O", shoning two evolutionary trends of magmatic suites: calc-alkaline (dotted line) and trondhjemitic (solid line). Square with references: A: T-T El Hueca B: T-T El Alto. C: Basalto Río Blanco. D: T-T Vallecito. E: G-G La Paya. F: G-G La Angostura. G: G-G Colomé. H: T-T Tres Tetas. I: G-G Incauca. J: T-T cachi. K: G-G El Brealito L: G-G. Square with references: A: T-T El Hueca B: T-T El Alto. C: Basalto Río Blanco. D: T-T Vallecita. E: G-G La Paya. F: G-G La Angostura. G: G-G Colomé. H: T-T Tres Tetas. I: G-G Incauca. J: T-T Cachi. K: G-G El Brealito L: G-G. Las Cabritas. M: G-G Pumayaco. (T-T: tonalite-trondhjemite; G-G: granodiorite-granite).

formación de estas rocas calco-alcalinas con diferentes relaciones sodio-potasio, en ambientes geotectónicos cambiantes de arco volcánico a margen continental activo, con caracteres distensivos o transtensivos.

Las formas en planta que desarrollan los intrusivos, sus tamaños y relaciones con las rocas de caja, permite asignarlos a distintas tiempos de intrusividad controlados por el ambiente geotectónico epizonal en el cual se han emplazado y cuyos caracteres son pre-, sin- y tardío-cinemáticos (Schön, 1991) que se relacionan genéticamente con los gneises y migmatitas que los envuelven.

Los intrusivos en general, muestran importantes similitudes petrográficas, son leucocráticos, constituidos esencialmente por plagioclasa y cuarzo, que definen las composiciones T-T, que gradan a rocas con contenidos mayores en feldespato alcalino, que definen a las G-G. La textura dominante es holocristalina, hipidiomórfica, con granulometría mediana. Variedades porfídicas ocurren localizadas en zonas de borde de los intrusivos, las cuales suelen desarrollar localmente foliación tectónica definida por la orientación preferencial de láminas de biotita y fenocristales de feldespatos. Ocasionalmente, donde la foliación y la lineación están bien definidas, se orientan paralelamente con la estructura del Complejo La Paya (Hongn *et al.*, 2001).

Las variaciones composicionales de las plagioclasas fueron estudiadas mediante microsonda por Schön (1991), reconociendo desde plagioclasas zoneadas relícticas tempranas de An57-36, que muestran fuerte alteración, especialmente en zoicita. Otro grupo de plagioclasas son xeno-mórficas intersticiales de origen tardío con composición <An9 y están presentes en granitos y granodioritas. Las plagioclasas zoneadas con alteración fuerte tienen composiciones de An50-11y las que tienen alteración débil la composición varía de An48-10. Otro grupo de plagioclasas son hipidiomórficas y se desarrollan en las trondhjemitas porfídicas con composición de An26-18 (Figura 3A). Accesorios comunes lo constituyen biotita, moscovita, epidota y cordierita parcialmente pinitizada, además se encuentra apatita, allanita, circón y monacita. Schön (1991) identifica en algunas trondhjemitas, mediante microsonda la presencia de los clino-piroxenos (diópsido-hedenbergita y augita) (Figura 3B).

Un ejemplo especial es la trondhjemita Incauca, que es un intrusivo sin-cinemático originado, emplazado y deformado en un ambiente dinámico (Figura 4- foto satelital), cuya forma estuvo controlada por esfuerzos dextrales no co-axiales. Su edad Rb-Sr sobre roca total es de 479+/-1 Ma (Lork, inédito) y sus caracteres geoquímicos son diferentes por ejemplo, al álcali-granito La Paya

Figura 3. A: Diagrama experimental de los feldespatos de Yoder *et al.* (1957) para 5 kbar de PH_2O , con los campos de plagioclasas y feldespatos alcalinos. **B:** Diagrama de piroxenos "Wo-En-Fs" (wollastonita-enstatita-ferrosilita), que delimita los campos del diópsido, hedenbergita y augita (Morimoto, 1988). / **Figure 3. A:** Experimental feldspars diagram after Yoder et al. (1957) for 5 kbar PH_2O . B: Pyroxene diagram "Wo-En-Fs" (wollastonite-enstatite-ferrosilite), showing the diopside, hedenbergite and augite fields (Morimoto, 1988).

Figura 4. Imagen satelital de la trondhjemita sin-cinemática Incauca, mostrando deformación dextral no-coaxial, desarrollado en migmatitas y gneises del Complejo La Paya (tomada de Google Earth). / Figure 4. Syn-kynematic Incauca granite satellite image, showing non-coaxial dextral deformation, developed in the migmatite - gneisses of La Paya Complex (from Google Earth).

cuya edad U-Pb en monacita es de 468 Ma. Ambos intrusivos, se diferencian de las T-T y G-G cálcicas, calco-alcalinas y alcalino-cálcicas, utilizando las relaciones P_2O_5 vs. Zr, propuesta originalmente por Winchester y Floyd (1975) para las rocas volcánicas (Figura 5 A).

Otro intrusivo sin-tectónico es el leuco-granito Pumayaco, que se encuentra en el extremo norte de la Sierra de Molinos y fue descrito por Sola *et al.* (2066), con desarrollo lenticular concordante dentro de las migmatitas del Complejo La Paya. El mismo, se ubica en las proximidades del Granito post-tectónico de La Angostura descrito por Cisterna (1986). Dichos autores determinan mediante diagramas concordia en circones la edad de 466,5+/-3 Ma, que también corresponde a la metatexita de la cual forma parte. Los resultados son coherentes con los obtenidos por Lork *et al.* (1989) en el granito post-tectónico La Angostura, mediante circones con 453/+25/-27 Ma y en monacitas con 462+/-1 Ma.

Caracteres sin-tectónicos similares evidencian la trondhjemita Tres Tetas (Galliski y Miller, 1989) y el basalto Río Blanco (Hauser, 2011) que además muestran en el diagrama Rb/Zr vs. Y, caracteres geoquímicos evolutivos primitivos (Figura 5B), diferentes a los intrusivos más maduros, que corresponderían a arcos de islas continentales.

Caracteres geoquímicos generales

Los intrusivos T-T, y G-G que se consideran en este trabajo, se asocian areal y temporalmente y sus composiciones químicas se expresan en las Tablas 1 y 2. A los plutones T-T los relacionamos genéticamente con basaltos similares a los del complejo intrusivo-efusivo, del Valle de Río Blanco, ubicados en las inmediaciones de la Finca Colomé (Hauser, 2011), a los cuales los consideramos como posibles predecesores, y fueron datados mediante circones en 496 +/-3 Ma, asimismo presentan relaciones iniciales ⁸⁷Sr/⁸⁶Sr de 0,70997 y sus caracteres geoquímicos son sub-alcalinos. Por su parte los intrusivos G-G se habrían formado por anatéxis cortical de material meta-sedimentario, sin aporte mantélico.

Los promedios composicionales de ambos grupos de intrusivos son los siguientes:

En el grupo G-G la SiO₂ varía entre 69,12 y 78.98%, con un promedio obtenido en 58 muestras, es de 73,66 %. En el diagrama de Maniar y Piccoli (1989), las rocas muestran relaciones moleculares ANK $(Al_{2}O_{3}/Na_{2}O+K_{2}O)$ que varían entre 1,0 y 2,0 versus ACNK (Al₂O₃/CaO+Na₂O+K₂O) que varían entre 0,69 y 1,57, con un promedio de 1,01 y se proyectan en los campos meta-aluminoso, per-aluminoso y per-alcalino (Figura 5C). El grupo es alto en potasio, con relaciones K₂O/Na₂O entre 1,63 y 1,34, con un promedio de 1,24; mientras que la suma de Na₂O+K₂O cubre el rango entre 4,13 y 8,23 %, con un promedio de 6,01%. El contenido de Fe₂O₂t varía entre 0,70 y 3,03%, con un promedio de 1,21. El MgO varía entre 0,12 y 1.44%, con un promedio de 0,47 mientras que el Ti O_2 lo hace entre 0,03 y 0,38%, con un promedio de 0,15 y el P₂O₅ entre el 0,02 y 0,60%, con un promedio de 0,08%. Los contenidos de H₂O son variables entre 0,06 y 0,95 %, con un promedio de 0,51%. La abundancia del Sr varía entre 89 y 826 ppm, con un promedio de 567 ppm, el Ba lo hace entre 0 y 1733 ppm, con un promedio de 784 ppm; el Zr entre 20 y 199 ppm, con un promedio de 132 ppm; mientras que el Y varía entre 13 y 217 ppm, con un promedio de 77 ppm. El Rb varía entre 23,7 y 162 ppm, con un promedio de 55 ppm; el Ga varía entre 2 y 22 ppm, con un promedio de 13,7 ppm; el Zn entre 49 y 280 ppm, con un promedio de 180,3 ppm; el Pb entre 6 y 58 ppm, con un promedio de 34 ppm; el V entre 11 y 1342 ppm, con un promedio de 234 ppm y el Co entre 2 y 85 ppm, con promedio de 20 ppm.

En el grupo T-T la SiO₂ varía entre 70,85 y 76,67%, con un promedio obtenido en 28 muestras de 74,30 %. En el diagrama de Maniar y Piccoli (1989), las rocas muestran relaciones moleculares ACNK (Al₂O₃/CaO+Na₂O+K₂O) que varían entre 0,87 y 1,35, con un promedio de 1,11 y se proyectan en los campos meta-aluminoso y per-aluminoso (Figura 5C). El grupo es bajo en potasio, con relaciones K₂O/Na₂O entre 0,11 y 0,21, con un promedio de 0,17; mientras que la suma de Na₂O+K₂O cubre el rango entre 6,1 y 10,71 %, con un promedio de 8,26%. El contenido de Fe₂O₂t varía entre 0,55 y 2,46%, con un promedio de 1,11. El MgO varía entre 0,04 y 1,87%, con un promedio de 0,50 mientras que el TiO₂ lo hace entre 0,01 y 0,35%, con un promedio de 0,10 y el P₂O₅ entre el 0,10y 1,23%, con un promedio de 0,23%. Los contenidos de H₂O son variables entre 0,20 y 1,23 %, con un promedio de 0,81%. La abundancia del Sr varía entre 38 y 472 ppm, con un promedio de 126 ppm, el Ba lo hace entre 150,2 y 1132 ppm, con un promedio de 782 ppm; el Zr entre 19 y 686 ppm, con un promedio de 101 ppm; mientras que el Y varía entre 22 y 140 ppm, con un promedio de 95 ppm. El Rb varía entre 63 y 413 ppm, con un promedio de 226 ppm; el Ga varía entre 2 y 17 ppm, con un promedio de 11 ppm; el Zn entre 39 y 217 ppm, con un promedio de 148 ppm; el Pb entre 2 y 41 ppm, con un promedio de 19 ppm; el V entre 2 y 1079 ppm, con un promedio de 195 ppm y el Co entre 2 y 181 ppm, con promedio de 44 ppm.

Los análisis químicos de los intrusivos que se proyectan en los diagramas ortogonales, muestran correlaciones negativas de la SiO₂ con respecto al TiO₂, Al₂O₃ y Fe₂O₃ que sería lo normal en la evolución por cristalización fraccionada de los magmas durante el enfriamiento (Figuras 5D, E, F), mientras que el MgO, muestra valores más altos en algunos granitoides, mientras que el resto de las rocas se distribuye en una nube (Figura 5G). Las interrelaciones de la SiO₂ con CaO, Sr, Na₂O, Rb y K₂O (Figuras 5 H, I, J, K, L) tienen patrones similares y constituyen nubes de puntos sin tendencias evolutivas definidas, que pueden ser interpretados como resultados de fenómenos de cristalización magmática dinámica, durante el ascenso y rápido enfriamiento de los magmas, que dificulta el fraccionamiento mineral.

Asimismo, los diagramas SiO_2 vs. Nb e Y (Figuras 6A, B) separan dos agrupaciones, una

con bajos contenidos en dichos componentes que corresponde a las T-T y otra alta en tales componentes en las G-G. Los bajos valores de Y (<40 ppm) se asimilan a rocas primitivas e incluye a las trondhjemitas de Tres Tetas y al basalto Río Blanco, como se observa en el diagrama Rb/Zr vs. Y, que confirma la separación entre las rocas de dichos intrusivos con el resto

Figura 5. Diagramas con tendencias evolutivas de los magmas. **A:** Diagrama P₂O₅ vs. Zr de Winchester y Floyd (1975) caracteriza a los intrusivos como tholeíticos. **B:** Diagrama Rb/Zr vs. Y muestra diferentes caracteres geoquímicos evolutivos primitivos, arco de islas, continentales e intrusivos más maduros. **C:** Diagrama molecular de Shand (ANK vs. ACNK) que proyecta las rocas en los campos per-aluminoso, meta-aluminoso y per-alcalino. **D, E, F, G:** Muestran tendencias evolutivas magmáticas negativas para el TiO₂, Al₂O₃ y Fe₂O₃ ty MgO (las flechas indican las tendencias de la cristalización). **H, I:** CaO, Sr, Na₂O y Rb con relación a la SiO₂, desarrollan nubes sin ningún patrón evolutivo claro. **L:** K₂O versus la SiO₂ separa dos grupos, uno bajo en K₂O que corresponde a las T-T y otro alto que agrupa a las G-G. **/ Figure 5.** Orthogonal diagrams show the behavior of the magmas. **A:** P2O5 vs. Zr after (Winchester and Floyd, 1975) characterize the intrusive as tholeitic and this classification was originally proposed for volcanic rocks. **B:** Diagram Rb/Zr vs. Y, show different evolutionary geochemical characterize from primitive, to the Island Continental Arc and more mature intrusives. **C:** Shand molecular diagram (ANK vs. ACNK) that plot the rocks in the per-aluminous, meta-aluminous and per-alkaline fields. **D, E, F, G:** Show that the magmatic evolutionary tendencies are negative for TiO₂, Al₂O₃ and Fe₂O₃ and MgO (the arrows indicate the trend of crystallization). **H, I:** Diagrams CaO, Sr, Na₂O and Rb in relation to SiO₂ constitute clouds without any clear evolutionary pattern. **L:** Diagram K₂O versus SiO₂ discriminate two groups, one low in K₂O that correspond to the T-T and another high that groups the G-G.

de los tipos litológicos. El diagrama ortogonal de Halliday y Stephens (1984) utiliza las relaciones moleculares de $[Al_2O_3/(CaO+Na_2O+K_2O]$ (ACNK) versus SiO₂ (Figura 6C) separando las G-G de tipo-S, de las T-T de tipo-I.

Asimismo, en el diagrama de Pearce *et al.* (1984) que usa las relaciones de Rb versus SiO₂ (Figura 6D), permite establecer las tendencias evolutivas y composiciones diferentes de ambos grupos ígneos, que excluye a la cristalización fraccionada como origen de ambos grupos, en los cuales la mayoría de las rocas se proyectan en el campo WPG (granitos intraplaca) y sólo unas pocas en el campo ORG (granitos de dorsales oceánicas).

Las relaciones entre Na₂O vs. K₂O (peso%) en el diagrama de Smith (1982), separa claramente a las T-T,

altas en Na₂O, de las G-G que son altas en K₂O (Figura 7A), mientras que en el diagrama Zr vs. SiO₂ se desarrolla una nube sin ninguna tendencia evolutiva (Figura 7B). En el diagrama de Frost *et al.* (2001) los intrusivos per-aluminosos muestran caracteres variables en respuesta a la variación de los contenidos de Na₂O+K₂O-CaO (índice MALI) vs. SiO₂ (peso %), los datos analíticos se distribuyen en los campos: cálcico, calco-alcalino, alcalino-cálcico y algunas alcalino. Con mayor frecuencia en el campo cálcico y decreciendo progresivamente hacia el alcalino (Figura 7C). Esta sistematización es coherente con la propuesta por Brown *et al.* (1984).

En el diagrama triangular Rb – Ba – Sr (El Bouseily y El Sokkary, 1975) se proyectan las composiciones de los intrusivos, en los campos correspondientes

Figura 6. A y B: Diagramas Nb e Y versus la SiO₂ discriminan dos grupos litológicos, uno bajo en estos componentes que corresponden a las T-T y otro alto que agrupa a las G-G. C: El diagrama ACNK versus SiO₂ (Halliday y Stephens, 1984) separa a las granodioritas y granitos (de tipo-S) de las tonalitas y trondhjemitas (de tipo-I). D: El diagrama de Pearce *et al.* (1984) Rb vs. SiO₂ separa a los granitos de intraplaca (WPG) de los granitos orogénicos (ORG). / Figure 6. A y B: Diagrams Nb and Y versus SiO₂ discriminate two lithological groups, one low in these components that correspond to the T-T and another high that group the G-G. C: ACNK versus SiO₂ plot (Halliday and Stephens, 1984) separates granodiorites and granites (S-type) from tonalites and trondhjemitas (type-I). D: Diagram of Pearce et al. (1984), Rb vs. SiO₂ separate intra-plate granites (WPG) from orogenic granites (ORG).

a las dioritas, granodioritas, cuarzo-dioritas y de los granitos normales y anómalos, siendo muy escasos los

granitos con fuerte diferenciación (Figura 7D). La figura 8A presenta al diagrama de Tierras

Figura 7. A: Diagrama Na₂O vs. K₂O (peso %) de (Smith (1982), separa a las tonalitas-trondhjemitas de tipo-I, de las granoriotitas-granitos de tipo-S. **B:** Diagrama Zr vs. SiO₂ desarrolla una tendencia evolutiva con el aumento del contenido en SiO₂. **C:** Diagrama de Frost *et al.* (2001) utiliza el Índice MALI (Na₂O+K₂O-CaO) vs. SiO₂ (peso %), los datos analíticos se distribuyen en forma creciente en los campos: alcalino, alcalino-cálcico, calco-alcalino y cálcico. **D:** Diagrama "Rb-Ba-Sr" de El Bouseily y El Sokkary (1975), las rocas se proyectan en los campos de las dioritas, cuarzo-dioritas y granodioritas, así como en los campos de granitos normales y anómalos. / **Figure 7. A:** Diagram Na₂O vs. K₂O (weight%) of (Smith (1982), discriminate tonalite-trondhjemite I-Type from granodiorite-granite S-type. **B:** Frost et al. (2001) diagram plot MALL index (Na₂O+K₂O-CaO) vs. SiO₂ (weight %). The samples of T-T and G-G rocks plot progressively in the alkalic, alkali-calcic, calcalkalic and calcic fields. **C:** Diagram "Rb-Ba-Sr" after El Bouseily and El Sokkary (1975), which plot the rock compositions in the fields of diorites, quartz-diorites and granodiorites, as well in the fields of normal and anomalous granites.

Figura 8. Diagramas de Tierras Raras normalizadas a Corteza Continental (Rudnick y Gao, 2003). A: T-T (Trondhjemitas-tonalitas) de Vallecito, El Alto, Cachi, El Hueco y el basalto Río Blanco, con desarrollo de una distribución bastante plana. Mientras que al álcali-granito La Paya (triángulos) muestra un enriquecimiento progresivo de las tierras raras pesadas y débil anomalía negativa de Eu. B: Idem, granito pre-tectónico Incauca, mostrando empobrecimiento progresivo de las tierras raras pesadas, sin anomalía negativa de Eu. / Figure 8. Rare Earth Elements diagrams normalized to Continental Crust (Rudnick and Gao, 2003). A: Vallecito, El Alto, Cachi, and El Hueco Trondhjemite-tonalite and Rio Blanco basalt, with a fairly flat distribution. While the alkali-granite La Paya (triangles) show a progressive enrichment of Heavy Rare Earth elements and weak negative Eu anomaly. B: Idem, Incauca pre-tectonic granite, showing progressive impoverishment of heavy rare earth elements, without negative Eu anomaly.

Raras normalizadas a Corteza Continental de Rudnick y Gao (2003) que corresponde a las T-T de Vallecito, El Alto, Cachi y El Hueco, que presentan muy débil o ausente anomalía negativa de Eu/Eu* de 0,81, con un patrón general de suave pendiente desde las tierras raras livianas a las pesadas. La suma de tierras raras de estos intrusivos, está entre 98 y 5 ppm, con anomalías de Eu/Eu* de 2,0-0,5. Las relaciones (La/Lu)n son de 12,4-0,3 y Eu/Sm de 0,6-0,2.

Asimismo, el basalto sub-alcalino de Río Blanco (Hauser, 2011), muestra los contenidos totales más altos y pendiente plana con muy suave enriquecimiento en tierras raras pesadas y débil anomalía de Eu; con una suma promedio de 113,24 ppm, relaciones (La/Lu)n de 1,02 y de Eu/Sm de 0,33. Mientras que al álcali-granito La Paya (triangulos) muestra un enriquecimiento en las tierras raras pesadas y débil anomalía negativa de Eu. La suma de tierras raras varía de 11 a 2,9 ppm, la anomalía de Eu/Eu* es de 0,7-0,4 y relaciones (La/Lu)n de 0,7-0,3 y Eu/Sm de 0,3-0,1. Mientras que en la figura 8B el intrusivo pre-tectónico tonalita-trondhjemita Incauca que muestra pendientes progresivas desde las tierras raras livianas a las pesadas sin anomalía negativa de Eu. Con la suma de tierras raras entre 26-11 ppm, con anomalía de Eu/ Eu^* es de 1,8-0,6 y las relaciones (La/Lu)n de 12,3-2,4 y de Eu/Sm de 0,15-0,53.

En el diagrama multi-elementos de normalización de granitoides se observa una estrecha afinidad composicional con la Corteza Continental de Rudnick y Gao (2003) con desarrollo de relaciones que varían entre 10 y 0,01, con enriquecimiento en Rb, V, Y y SiO₂ (Figura 9).

Consideraciones sobre las metodologías isotópicas y sus implicancias

Los datos previos obtenidos mediante las metodologías tradicionales K-Ar y Rb-Sr, presentan fuertes incertidumbres y contradicciones, como lo muestran los resultados logrados por Halpern y Latorre (1973); Borrello (1969, 1971); Galliski (1983), Damm *et al.* (1986), Adams *et al.* (1989, 1990), etc. Asimismo, algunas determinaciones Rb-Sr previas, de granitoides de la Sierra de Cachi, generaron confusión con las edades modelos obtenidas mediante isócronas, que dieron valores significativamente más antiguos. En la determinación de la edad modelo del granito La Angostura (Halpern y Latorre, 1973) asumieron una relación inicial de Sr de 0,7070, que es demasiado alta

Figura 9. Diagrama multi-elementos de normalización de granitoides con estrecha afinidad composicional con la Corteza Continental de Rudnick y Gao (2003) con desarrollo de un patrón de las relaciones, que varían entre 10 y 0,01 y enriquecimiento en Rb, V, Y y SiO₂. / **Figure 9.** Spider diagram of granitoids normalized to Continental Crust (Rudnick and Gao, 2003) with a plane patterns and affinity to Continental Crust and positive peaks of Rb, V, Y and SiO₂ with variation between10 and 0.01.

para las trondhjemitas aluminosas de origen cortical, lo que condujo a un cálculo de edad mayor al real. Según Peterman (1979), las trondhjemitas mantélicas muestran generalmente bajas relaciones de 0,7026 a 0,7034, pero los contenidos de Sr en estos intrusivos, así como las bajas relaciones Sr/Y <40, indican estrecha afinidad geoquímica con las rocas de la Formación Puncoviscana. Asimismo, se hace evidente la falta de homogeneización isotópica en las rocas consideradas y también los resultados obtenidos indicarían perdida de componentes del sistema isotópico, lo cual lleva a calcular falsas edades precámbricas de las intrusiones.

En el caso de los circones detríticos el problema se soluciona parcialmente con la aplicación de técnicas analíticas auxiliares, como microscopia electrónica y cátodo-luminiscencia, para poder detectar la existencia de relictos antiguos en los circones a través de cambios en la morfología y coloraciones. Esta información permite contrastar los resultados de las edades U-Pb que se obtienen en circones y monacitas, para interpretar su significado geológico. En las figuras 10A-B, se muestran monacitas idiomorfas de los granitos El Brealito y El Alto. En la figura 10C, se muestra un circón euhedral de origen magmático del granito El Brealito, y en la figura 10D se presenta un circón detrítico heredado, con sobre-crecimientos por efecto térmico, obtenido en el Granito Rancagua.

Las metodologías analíticas aplicadas en las monacitas, permiten detectar variaciones significativas en los cristales. Las monacitas transparentes presentan distribución uniforme de los elementos, con ausencia de componentes extraños o bien en muy baja proporción; mientras que las monacitas turbias, muestran variable concentración de impurezas y alteraciones, lo

Figura 10. A: Monacita idiomorfa amarillenta del Granito El Brealito. B: Monacita idiomorfa del Granito El Alto. C: Circón euhedral magmático del Granito El alto. D: Circón detrítico recristalizado euhedral del Granito Rancagua. / Figure 10. A: Yellowish idiomorph monazite of El Brealito granite. B: Idiomorph Monazite from El Alto granite. C: Magmatic euhedral zircon from El Alto granite. D: Euhedral recrystallized detrital zircon of Rancagua granite.

que las hace menos adecuadas para datar.

Para alcanzar resultados confiables y ajustar la secuencia temporal de los acontecimientos metamórfico-intrusivos en la Cordillera Oriental y su integración en el contexto regional, fue fundamental la adecuada selección del material a procesar, para lo cual se obtuvieron trece (13) grandes muestras (50 a 60 kg c/u) de rocas representativas de las localidades seleccionadas en las sierras. Asimismo, en las T-T de El Alto y Vallecito, se tomaron 30 muestras representativas, distribuidas entre las zonas interna y externa de los plutones.

Para ampliar el panorama geológico regional de estas rocas y poder compararlas con los resultados obtenidos en trabajos anteriores, también se procesaron muestras de circón y monacita de los intrusivos de Aguas Calientes (trondhjemita), Tres Tetas (trondhjemita), El Brealito (granito), La Angostura (granito) y Tacuil (granito), junto a las meta-sedimentitas de la Formación Puncoviscana en las localidades de Las Pampitas, Rancagua y Seclantás. También se evaluaron las edades de los afloramientos ígneo-metamórficos de La Paya, Vallecito, Las Cabritas, Incauca y Pumayaco.

Los resultados radiométricos obtenidos en las monacitas son los que mejor ajustan las edades y permiten identificar las fases orogénicas a las que pertenecen los intrusivos.

Las determinaciones en monacitas, mediante el diagrama convencional de concordia U- Pb, tiene la ventaja de dar las edades de los eventos geológicos, directamente sobre la curva de concordia, en contraste con las incertidumbres de interpretación que se tienen con los circones que generan las discordias (Pasteels, 1970; Grauert *et al.*, 1974; Schärer y Alegre, 1983).

Edades isotópicas U-Pb en monacita y circón

En el diagrama de concordia de la figura 11, se muestran las relaciones isotópicas ²⁰⁶Pb/²³⁸U vs. ²⁰⁷Pb/²³⁵U, en monacitas claras, de diferentes granulometrías, que presentan elipses de error pequeñas de los intrusivos estudiados, como una síntesis integrada de edades de cristalización magmática entre 480 y 460 Ma, en los cuerpos de Aguas Calientes, Tres Tetas, Tacuil, El Brealito, La Paya, Vallecito y La Angostura.

Por otra parte, los estudios por cátodo-luminiscencia de los circones de la Granodiorita El Brealito y del Gra-

Figura 11. Diagrama concordia con elipses de error de monacitas en granitoides de la Cordillera Oriental y la Faja Eruptiva Oriental de la Puna. Abreviaturas: AGCAL: Aguas Calientes; TRETE: Tres Tetas; TACU: Tacuil; BREAL-1: El Brealito; PAY-2: La Paya; VAL-1: Vallecito; ANG-1: La Angostura. / Figure 11. Monazite concordia diagram with error ellipses of granitoids of Eastern Cordillera and Faja Eruptiva Oriental de la Puna. Abbreviations: AGCAL: Aguas Calientes; TRETE: Tres Tetas; TACU: Tacuil; BREAL-1: El Brealito; BREAL-1: El Brealito; PAY-2: La Paya; VAL-1: Vallecito; ANG-1: La Angostura. / Figure 11. Monazite concordia diagram with error ellipses of granitoids of Eastern Cordillera and Faja Eruptiva Oriental de la Puna. Abbreviations: AGCAL: Aguas Calientes; TRETE: Tres Tetas; TACU: Tacuil; BREAL-1: El Brealito; PAY-2: La Paya; VAL-1: Vallecito; ANG-1: La Angostura.

nito Tacuil, muestran que los mismos son homogéneos, como resultado de un estadio único de cristalización, a diferencia de los circones encontrados en los otros intrusivos de la sierra, que muestran re-cristalización parcial y zonación en los granos, resultantes de varias etapas de crecimiento.

En el diagrama convencional concordia-discordia de la figura 12A, las determinaciones evidencian que las monacitas claras son las más adecuadas para datar, por su concordancia. Las monacitas turbias muestran cierta dispersión como en la trondhjemita El Brealito, pero cuando se las trata con HNO₃ tienden a alinearse sobre la concordia, con la edad de 472 Ma. Asimismo, las monacitas claras dan edades algo mayores que las turbias La figura 12B que muestra la distribución de edades concordantes de las relaciones ²⁰⁶Pb/²³⁸U vs ²⁰⁷Pb/²³⁵U en 473 Ma, con las distintas granulometrías de monacitas claras del monzogranito Tacuil, en la Faja Eruptiva Oriental de la Puna.

El muestreo de las migmatitas del Complejo La Paya en la zona de El Alto, se realizó a >500 m de distancia de la trondhjemita. Las monacitas clásticas muestran sobre-crecimientos acaecidos durante la migmatización, que se hacen evidentes con los estudios por cátodo-luminiscencia. La figura 13A, muestra en el diagrama concordia que las monacitas de los intrusivos El Alto y Las Pampitas dan 467 Ma, utilizando diferentes granulometrías y tratadas con HNO₃; mientras que los de Vallecito (Figura 13B) también utilizando las diferentes granulometrías dan 467,5 Ma. Asimismo, las dataciones realizadas utilizando las diferentes granulometrías de monacitas, no muestran diferencias significativas en los resultados.

Figura 12. Diagramas concordia con las elipses de error de diferentes fracciones granulométricas de monacita. A: Monzogranito El Brealito en el sur de la Sierra de Cachi y B: Monzogranito Tacuil en la Faja eruptiva de la Puna Oriental. / Figure 12. Conordia diagrams nith error ellipses of different monazite granulometric fractions. A: El Brealito monzogranite in the south of Sierra de Cachi. B: Tacuil monzogranite in the Faja Eruptiva of Puna Oriental. Figura 13. Diagramas concordia de monacitas con la proyección de los valores de las fracciones granulométricas y de muestras tratadas con HNO3. A: Trondhjemita El Alto (PAY-2) y migmatitas Las Pampitas (LAPAM-1). B: Idem, trondhjemita Vallecito. / Figure 13. Monazite concordia diagrams with error ellipses of different granulometric fractions and samples with HNO3 treated. A: El Alto trondhjemite (PAY-2) and Las Pampitas migmatites (LAPAM-1). B: Idem, Vallecito trondhjemite.

La figura 14 muestra las relaciones ²⁰⁶Pb/²³⁸U vs. ²⁰⁷Pb/²³⁵U, con las elipses de error pequeñas de las monacitas transparentes, en muestras de las trondhjemitas de Aguas Calientes, Tres Tetas, El Brealito, La Paya y La Angostura dan edades entre 400 y 515 Ma. Asimismo, en la figura 15, utilizando las mismas relaciones

para las trondhjemitas Aguas Calientes y Tres Tetas, tienen elipses de error mayores en las diferentes fracciones granulométricas de monacitas turbias y transparentes, las cuales fueron tratadas con HNO₃ y HC₁. Por su parte en la zona de Rancagua, los circones obtenidos en las zonas de borde y techo de la Trondhjemita Aguas

Figura 14. Diagrama concordia U-Pb de monacitas cogenéticas turbias y transparentes con las elipses de error de diferentes fracciones granulométricas en las trodhjemitas Aguas Calientes y El Alto (AGCAL-1, PAY-2) y de granitos El Brealito y La Angostura (BREAL-1, ANG-1). / Figure 14. Conordia diagram U-Pb of agenetic monazite turbid and transparent nith error ellipses of different granulometric fractions in Aguas Calientes and El Alto trodhjemites (AGCAL-1, PAY-2), and El Brealito and La Angostura granites (BREAL-1, ANG-1). Figura 15. Diagrama concordia U-Pb de monacitas cogenéticas turbias y transparentes con las elipses de error de diferentes granulometrías en la trondhjemita Aguas Calientes (AGCAL-1) y una fracción de monacitas claras y transparentes de la trondhjemita Tres Tetas (TRETE-1). Muestras tratadas con HCl y abrasión superficial. / Figure 15. Monazite conordia diagram U-Pb nith error ellipses of different granulometric fractions turbid and transparent of Aguas Calientes (AGCAL-1) and a fraction of monazite clara to transparent of Tres Tetas trondhjemite (IRETE-1). Samples subjected to attack with HCl and superficial abrasion.

Calientes y del Álcali-granito La Paya,, los cuales se comparan con los circones detríticos de las psamitas de la Formación Puncoviscana.

En las T-T de El Alto, las relaciones ²⁰⁶Pb/²³⁸U vs. ²⁰⁷Pb/²³⁵U de la discordia de circones detríticos intersecta a la concordia en 481+14/-16 Ma, sin mostrar diferencias entre las diferentes granulometrías utilizadas (Figura 16). Esta trondhjemita es el único intrusivo, con circones monofásicos homogéneos, que se aproximan a los valores obtenidos con las monacitas idiomórfas claras de 467 Ma presentes en la trondhjemita.

Las dataciones, U/Pb en migmatitas y corneadas, en las localidades de Las Pampitas y La Paya, determina con circones 468 Ma? (aunque con cierta incertidumbre estadística), que se asemeja al valor de 467 Ma, obtenido con monacitas (Figura 17A). Asimismo el Granito Brealito (Figura 17B) contiene poblaciones cogenéticas de circones detríticos que determinan una edad de intersección de la discordia de 442 Ma y con una intersección superior de 1370 Ma (datos en Tabla 5).

Isotopía Rb-Sr: Asimilación de roca de campo por los granitoides

El método de isócronas Rb-Sr se utiliza para determinar la edad de rocas y minerales, en condiciones adecuadas. Asimismo, las relaciones isotópicas Rb-Sr también permiten obtener información sobre el área fuente de las rocas ígneas (Faure y Powell, 1972; Faure, 1986), por lo que se aplicaron dichas relaciones isotópicas en quince muestras de T-T, obtenidas de los intrusivos: El Alto, Vallecito, La Angostura, Tres Tetas, Aguas Calientes, El Brealito, Incauca y Tacuil, al igual que en la dacita de Seclantás.

Dichos valores fueron obtenidos sobre roca total y proyectados en los diagramas de isócronas (Tabla 3). Los criterios de homogeneidad geológica fueron establecidos en base a las relaciones iniciales de ⁸⁷Sr/⁸⁶Sr y ⁸⁷Rb/⁸⁶Sr, así como por sus concentraciones en diferentes áreas de los intrusivos. En las áreas centrales de los intru-

Figura 16. Fracciones granulométricas de circones en el diagrama discordia de la T-T El Alto. La intersección de la discordia determina una edad de 481 +14/-16 Ma. Las monacitas dan en la concordia 467 Ma. Detalle: edad determinada con elipses de error de diferentes granulometrías de monacitas claras y turbias. **/ Figure 16.** Zircon granulometric fractions in discordia diagram of El Alto T-T. The intersection of discordia line determine an age of 481 + 14/-16 My. Concordant clear monazite determine an age of 467 My. Detail: the age determined with different granulometric error ellipses of monazite clear and turbid.

Figura 17. Diagramas discordia ²⁰⁶Pb/²³⁸U versus ²⁰⁷Pb/²³⁵U. **A:** Edad de 468 Ma definida por circones detríticos idiomorfos claros, redondeados transparentes y marrones. Ellos corresponden a un xenolito derivado de la Formación Puncoviscana incluido en las migmatitas de Las Pampitas, cuya edad es similar a las monacitas del Granito La Paya en 467 Ma. **B:** Discordia de cinco fracciones detríticas cogenéticas de circones del granito El Brealito. La curva define una intersección inferior en 442 Ma, y una superior en 1370 Ma (datos en Tabla 5). / **Figure 17.** Discordia diagrams ²⁰⁶Pb/²³⁸U versus ²⁰⁷Pb/²³⁵U. **A:** An age of 468 My is defined by detrital zircons dear idiomorphic, transparent and brown rounded. They are in the xenolith, derived from Puncoviscana Formation, included in the migmatites of Las Pampitas. This age is similar to 467 My defined by the monazite of La Paya granite. **B:** Discordia of five cogenetic detritic fractions of zircons obtained from El Brealito granite. The curve define a lower intersection at 442 My, with an upper intersection at 1370 My (data in Table 5).

sivos, los valores medidos son bajos y muestran bajas variaciones en las relaciones de Rb-Sr, dichos valores fueron contrastados con los de las zonas de margen y techo, que tienen relaciones más altas, las cuales son decisivas para establecer la pendiente de la recta de regresión utilizanso los valores de la muestra PAY-2, que permite calcular una línea de referencia de 513 Ma? (Cámbrico alto), la cual no se considera una isócrona, debido a la falta de una completa homogenización isotópica del estroncio (Figura 18).

Para establecer la relación genética de los intrusivos con la roca de caja, fue necesario cuantificar el grado de contaminación cortical de los fundidos para lo cual se adoptó un modelo de mezcla, con dos componentes sedimentarios, una "pelita A" con el valor de 0,7187 y una "psamita B" con el valor de 0,7153, los cuales se consideran como miembros extremos, a los que se suma un "fundido C" con un valor de 0,7032, el cual corresponde a la composición de la Trondhjemita Vallecito (Figura 19A). En la proyección de los análisis en el diagrama ⁸⁷Sr/⁸⁶Sr versus Sr (ppm) se acota su rango de variación.

Según Langmuir et al. (1978), la mezcla de dos componentes desarrollan hipérbolas: (a) de trondhjemita/pelita, y (b) de trondhjemita/psamita, que evidencia la contaminación de la trondhjemita Incauca INCA-1) en el 10 - 20%, en las zonas marginales; mientras que en la zona central de Aguas Calientes (AGCAL-1) habría asimilado <5% de roca de campo. Asimismo, las rocas obtenidas en el entorno de xenolitos de El Alto (PAY-2) y en la zona de techo del Plutón Aguas Calientes (AGCAL-1), muestran mayor contaminación. Estos resultados son coherentes con los datos experimentales y teóricos de la mecánica de fluidos en cámaras de magma que ascienden y evidencian el mayor volumen de asimilación en el techo de los plutones (Huppert y Sparks, 1988; Campbell y Turner, 1987). El gráfico de las concentraciones reciprocas de Sr (ppm) versus las relaciones ⁸⁷Sr/⁸⁶Sr

Figura 18. Diagrama de isócronas Rb-Sr de las trondhjemitas El Alto, Vallecito, Aguas Calientes, Tres Tetas e Incauca (PAY-2, VAL-1, AGCAL-1, TRETE-1, INCA-1). La curva de 513 Ma?, fue calculada para la muestra (PAY-2) que sólo refleja una edad de referencia de los intrusivos. / Figure 18. Rb-Sr isochronous diagram for El Alto, Vallecito, Aguas Calientes, Tres Tetas and Incauca trondhjemites (PAY-2, VAL-1, AGCAL-1, TRETE-1, INCA-1). Regression reference line of 513 My?, is calculated for the sample (PAY-2) that only reflects a reference age of plutons.

Figura 19. Relaciones isotópicas ⁸⁷Sr/⁸⁶Sr versus Sr (ppm), en roca total de tonalitas-trondhjemitas, granitos-granodioritas, álcali-granitos y meta-sedimentos de la Formación Puncoviscana, recalculadas para 470 Ma. **A:** La hipérbola de mezcla (a) fue calculada para mezclas de: pelitas/trondhjemitas y (b) para la mezcla de psamitas/trondhjemitas. **B:** Relaciones isotópicas ⁸⁷Sr/⁸⁶Sr re-calculadas con dependencia de la reciproca de las concentraciones, curva (a) pelitas/ trondhjemitas y (b) psamitas/trondhjemitas. **/ Figure 19.** *Isotopic ratios ⁸⁷Sr/ ⁸⁶Sr versus Sr (ppm) concentration, in whole rock of tonalite-trondhjemite, granite-granodiorite, alkali-granites and meta-sediments of Puncoviscana Formation, recalculated for 470 My.* **A:** *Mixing hyperbole (a) it was calculated for the member of mixture of pelite/trondhjemite and (b) for the mixture of psammite/ trondhjemite.* **B:** *Isotopic ratios ⁸⁷Sr/⁸⁶Sr recalculated depending on the reciprocal of the concentration, curve (a) pelite/trondhjemite, and (b) psammite/trondhjemite.*

(Figura 19b) permite la transformación de las hipérbolas en dos rectas: (a) trondhjemita/pelita, y (b) trondhjemita/psamita. Los puntos representan a los productos de mezcla de una matriz lineal. La alta dispersión de los valores de referencia de las rocas sedimentarias, indica gran heterogeneidad composicional.

Los granitoides de la Sierra de Cachi, deben sus altos coeficientes iniciales de ⁸⁷Sr/⁸⁶Sr a herencia cortical, con valores en La Angostura (ANG-1: 0,7100; ANG-5: 0,7118); El Brealito (BREAL-1: 0,7146) y en la Faja eruptiva de la Puna en Tacuil (TACU-1: 0,7148). Esto también se cumple con los clastos de dacitas en Seclantás (SEC-1: 0,7183). La superposición de los valores isotópicos de Sr en los granitoides El Brealito y Tacuil, con los sedimentos psamíticos, evidenciaría su origen por anatéxis de la Formación Puncoviscana. En el granito La Angostura, los valores son más bajos, lo cual indicaría un componente cortical dominante, con aporte de material básico (relación 9:1), los cuales serían los materiales de partida para la generación de un magma de composición intermedia. Por su parte, los álcali-granitos muestran concentraciones de isótopos de Sr, similares a las pelitas.

Consideraciones geológicas

Las rocas intrusivas, de las sierras de Palermo, Cachi y Molinos se han generado durante el Ciclo Famatiniano, que habría ocurrido entre los 481 y 453 Ma, según los resultados de las dataciones U-Pb sobre circones y especialmente en monacitas, obtenidos para los diferentes plutones. A diferencia del magmatismo del Sistema de Famatina, han desarrollado caracteres particulares que no se detectan en otras localidades de la Puna, Cordillera Oriental y Sierras Pampeanas, lo que lleva a proponer diferentes hipótesis petrogenéticas (Figura 20).

Figura 20. Mapa esquemático con la ubicación de los intrusivos y sus edades isotópicas. / Figure 20. Reference map with location of different plutons and their isotopic ages.

En la interpretación de las condiciones de las intrusiones es de especial interés y altamente significativo, que las T-T tienen relaciones $K_2O/$ Na₂O <1, mientras que las G-G la relación es >1. Asimismo, es notable la amplia variación composicional de las plagioclasas, que denota falta de equilibrio durante el enfriamiento y ascenso, permitiendo que se vayan formando cristales de plagioclasas cada vez más sódicas o directamente feldespatos alcalinos en las granodioritas-granitos. Los extremos composicionales de los feldespatos indicarían un campo de temperaturas comprendido entre los 1000° C y los 800° C, según los datos experimentales de Yoder et al. (1957) bajo una presión de 5kb/PH₂O. Estos datos constituyen una fuerte evidencia sobre el relativamente rápido ascenso de los intrusivos de pequeño volumen. En el mismo sentido puede aplicarse a la presencia relíctica de piroxenos (diópsido, hedenbergita y augita), establecida por Schön (1991), que no llegaron a transformarse en silicatos ferro-magnesianos hidratados estables a más bajas temperaturas, lo que estaría indicando falta de equilibrio en el magma durante el ascenso y enfriamiento relativamente rápido, evidenciando contenidos más altos en volátiles para las tonalitas-trondhjemitas (T-T: 0,81%), que en las granodioritas-granitos (G-G: 0,51%).

En el diagrama P_2O_5 vs. Zr de Winchester y Floyd (1977) (Figura 5 O), los intrusivos muestran caracteres tholeíticos que podrían estar evidenciando los fenómenos terminales distensivos o transtensivos en un arco magmático continental o de borde continental activo, desarrollado en este período, con subducción lenta o ausente, en esta región de la cuenca ordovícica. La mayoría de los intrusivos muestran caracteres cálcicos, calco-alcalinos, alcalino-cálcicos y sólo los granitos La Paya e Incauca evidencian atributos alcalinos (Figura 7B). Esto apuntaría en teoría, al desarrollo de un ciclo tectónico-magmático completo de evolución (Frost *et al.*, 2001; Brown *et al.*, 1984).

Las evidencias geoquímicas mostradas en los diferentes diagramas petrogenéticos, ayudan a interpretar que los plutones podrían haberse generado en distintos niveles corticales, o bien a partir de diferentes protolitos, con probable participación de material híbrido, volcano-sedimentario cuya presencia está documentada y que es típica para un arco magmático generado en un borde continental activo o en un arco de islas continental.

La llamativa y singular la asociación de T-T con G-G, muestra variaciones en las relaciones iniciales ⁸⁷Sr/⁸⁶Sr entre 0,70330 y 0,70394, que corresponderían a fuentes diferentes para las granodioritas-granitos, que derivarían esencialmente de meta-sedimentos, con relaciones de estroncio entre 0,71275 y 0,71327, mientras que en la génesis de las trondhjemitas-tonalitas, participarían basaltos tholeíticos. El álcali-granito de La Paya muestra contenidos de tierras raras comparables con las trondhjemitas, pero con un comportamiento isotópico diferente, la cual sería correlacionable con las variaciones observadas en las rocas sedimentarias de la Formación Puncoviscana.

Las migmatitas y gneises de la Sierra de Cachi, muestran distribución espacial y relaciones geológicas, que permiten suponer se han originado por eventos dinamo-térmicos de metamorfismo regional, relacionados con el mismo evento magmático- tectónico-metamórfico de edad ordovícica, con diferencias en los procesos actuantes.

Considerando el desarrollo de extensas áreas de gneises y migmatitas del Complejo La Paya, desarrolladas a partir de una fuente meta-sedimentaria que podría corresponder, al menos en parte, a la Formación Puncoviscana, como lo indican las relaciones geológicas y los circones incluidos en las mismas, junto a las relaciones isotópicas determinadas, sugieren que su génesis se iniciaría con fenómenos de metamorfismo regional dinamo-térmico, asociado a la subducción del inicio del Ciclo Famatiniano, que en niveles profundos desencadenaría el desarrollo de gneises y migmatitas, que por inestabilidad gravitacional tenderían a ascender, dando lugar al desarrollo de domos térmicos. En el mismo ambiente, pero a mayor profundidad y relacionado probablemente con un período transtensivo, que generaría fundidos anatécticos (granitoides sin-tectónicos) por ascenso de fundidos básicos de origen mantélico que perforarían a las rocas metamórficas, dando lugar a los plutones tonalítico-trondhjemíticos, que durante los fenómenos de cristalización fraccionada forman los magmas granodiorítico-graníticos de carácter tardío-tectónico, que a su vez generan aureolas de metamorfismo térmico, con desarrollo de esquistos y filitas con nódulos de cordierita, biotita y clorita, las cuales pasan gradualmente a las pizarras de la Formación Puncoviscana.

Esta interpretación se ajusta con las dataciones realizadas en la zona de La Angostura, donde Sola *et al.* (2006) establecen una edad U-Pb en circones de 466,5+/-3 Ma, en el granito sin-tectónico anatéctico Pumayaco que forma parte de las migmatitas, mientras que el granito post-tectónico La Angostura que fue datado por Lork *et al.* (1989, 1990) en 453+25/-27 Ma, en circones. Dicho valor es coherente con la edad de la monacita de 462+/-1 Ma, poniendo evidencia que el proceso metamórfico-magmático responde a un evento único desarrollado en el Ordovícico.

En la generación magmática habría participación de magma tholeítico como lo propone Galliski et al. (1983, 1990), que estaría relacionado genéticamente con zonas distensivas de un retro-arco primitivo, como parecen indicarlo la per-aluminosidad y localmente la abundancia de sodio. Méndez et al. (2006) sostienen que el origen del magma trondhjemítico se asociaría con un probable cambio del ángulo la zona de subducción activa durante la evolución de arco Famatiniano, que favorecería los altos contenidos en sodio, debido a la fusión de la corteza baja o a la subducción de corteza oceánica. Lo que queda sin aclarar es la asociación de intrusivos cálcicos, calco-alcalinos y alcalino-cálcicos (Brown et al., 1984; Frost et al., 2001), que en conjunto tienen volúmenes relativamente restringidos en relación con la extensión de las rocas migmatíticas del Complejo La Paya.

Los circones de la Formación Puncoviscana, asimilados por los fundidos anatécticos, sólo se han disuelto parcialmente, debido al tiempo de residencia muy corto en el fundido, pero que se ajustan parcialmente, en algunos casos, a las edades de los intrusivos.

Conclusiones

Las rocas ígneas de la Cordillera Oriental constituyen dos grupos estrechamente relacionados en el campo y con caracteres petrográficos que les son particulares, los cuales se relacionan con sus correspondientes ambientes de formación y su evolución genética particular acaecida durante el ascenso en la corteza.

El grupo de las T-T, son bajas en potasio mostrando relaciones $K_2O/Na_2O <1$ y contenidos promedio de $Na_2O + K_2O = 8,26\%$. Por su parte el grupo de las G-G son altas en potasio con relaciones $K_2O/Na_2O >1$ y contenidos promedio de $Na_2O + K_2O = 6,01\%$.

La investigación de los circones contenidos en la Formación Puncoviscana, permite reconocer al menos dos agrupaciones, una de origen claramente detrítico, con formas redondeadas por abrasión, provenientes de terrenos erosionados más antiguos. Mientras, que los volcanogénicos, tienen formas prismáticas y la zona de caída en la cuenca no debe estar a no más de 200 km, lo que evidencia la actividad piroclástica en la cuenca de deposición. Ambos grupos, que se reconocen en las corneanas y migmatitas del Complejo La Paya, mantienen gran parte de sus caracteres morfológicos originales.

En el norte de Argentina el complejo intrusivo de Santa Rosa de Tastil muestra edades según las fases, entre 541 y 513 Ma (Bachmann *et al.*, 1987; Hauser, 2011; Augustsson *et al.*, 2010), que corresponden a la culminación del Ciclo Pampeano, mientras que los intrusivos de las sierras de Cachi, Palermo y Molinos las edades ya corresponden al Ciclo Famatiniano, los cuales fueron datados con monacitas ígneas y circones detríticos que incluyen a: las granodioritas de Tacuil y Brealito con 470 Ma; la trondhjemita de La Paya con 468 Ma. El leuco-granito sin-tectónico de Pumayaco, en la zona migmatítica de La Angostura da 466,5+/-3 Ma en circones (Sola *et al.*, 2010); así como el granito post-tectónico en la misma zona en monacitas da 462 +/-1Ma y con circones 457+/-27 Ma Lork et al. (1989). El granito Aguas Calientes dio en monacitas 478 Ma y las trondhjemitas Tres Tetas 481 Ma y Vallecito 467,5 Ma. En la trondhjemita de El Vallecito se obtuvo con circones homogéneos 488+14/-16 Ma, valores que entran en la elipse de error de edad de las monacitas (Figura 16). Por su parte el Granito Incauca da mediante Rb-Sr, 479+/-1 Ma, (Lork, inédito).

Las edades obtenidas evidencian que la actividad magmática en las sierras estudiadas, se habría desarrollado como un evento magmático, con edades entre 488 y 453 Ma, correspondientes al Ciclo Famatiniano.

Asimismo, en el valle de Río Blanco en las proximidades de Finca Colomé aflora rocas basálticas volcánicas/sub-volcánicas con una edad U-Pb en circones de 496+/-3 Ma (Hauser, 2011), que por todas las evidencias sería predecesor del magmatismo plutónico de las Sierras de Palermo, Cachi y Molinos, ya que rocas basálticas habrían participado en la génesis de las trondhjemitas, como lo sostienen Galliski y Miller (1989).

La distribución regional de los intrusivos y sus edades ordovícicas, se muestra en el esquema geológico de la figura 20 y en la Tabla 4.

Datos indirectos de la edad de la intrusión del álcali-granito de La Paya y el Granito Las Pampitas, se obtuvieron mediante circones detríticos marrones contenidos en las corneanas y migmatitas, que dan 468 Ma, que concuerdan con la edad de las monacitas ígneas del granito de 467 Ma (Figura 17A).

Las determinaciones en circones relícticos heredados, se limitan generalmente a las proximidades de los contactos de los intrusivos. Estas zonas de asimilación tienen alta contaminación, mientras que en el caso de la trondhjemita El Vallecito presenta circones heredados y son los únicos circones geológica e isotópicamente significativos, con una edad de 488+14/-16 Ma (Figura 16).

Las relaciones iniciales ⁸⁷Sr/⁸⁶Sr y dataciones ⁸⁷Rb/⁸⁶Sr mediante isócronas de estos intrusivos, no siempre dan resultados confiables, debido a las incertidumbres en su homogenización isotópica.

Los intrusivos G-G tienen relaciones iniciales ⁸⁷Sr/⁸⁶Sr más bajas que la Formación Puncoviscana, lo que apoyaría su génesis por anatexis de los meta-sedimentos que la forman; mientras que en tanto las T-T tienen valores que indicarían la participación de material básico.

Las edades de cristalización de las monacitas en las rocas migmatíticas que rodean a las trondhjemitas de Las Pampitas y el Puesto El Alto, son coincidentes. Esto no significa que las migmatitas se hayan formado por metamorfismo de contacto, sino que responden a un evento de ascenso de domo térmico, relacionado con los intrusivos. En general las trondhjemitas están rodeadas por las migmatitas que como se expresa, no corresponden genéticamente a las aureolas de contacto, con sus caracteres texturales y su amplio desarrollo regional.

Referencias

- Abdel-Fattah, Z. A. y Assal, E. M. 2016. Bioerosion Aceñolaza, F.G., y Toselli, A.J., 1976. Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del noroeste argentino. II Congreso Latino Americano de Geología Venezuela. 2: 741-754.
- Aceñolaza F. y Toselli A, 1981. Geología del Noroeste Argentino. Universidad Nacional de Tucumán, 212 p., Tucumán.
- Adams, Ch., Miller, H., y Toselli, A.J. 1989. New K-Ar ages on the metamorphic history of the Puncoviscana Formation and equivalents, NW Argentina. Zentralblatt Geologie und Paläontologisch. Teil I (5-6): 987-997.
- Adams, Ch., Miller, H., y Toselli, A.J. 1990. Nuevas edades de metamorfismo por el método K-Ar de la Formación Puncoviscana y equivalentes, NW Argentina. In: Aceñolaza, F.G., Miller, H., y Toselli, A.J. (eds.). El Ciclo Pampeano en el Noroeste Argentino. Serie Correlación Geológica, 4: 209-219.

Tucumán.

- Arth, J.G., Barker, F., Peterman, Z.E., y Friedman, I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. *Journal of Petrology*, 19: 289-316.
- Augustsson, C., Rüsing, T., Adams, C., Zimmermann, U., Chmiel, H., Kocabayoglu, M., Büld, M., Berndt, J. and Kooijman, E., 2010. Revealing provenance of quarts-rich sandstones using detrital Quartz and zircon as source rock indicators: an example for the Cambrian of NW Argentina. *Geophysical Research Abstracts*, 12: EGU-3934-1.
- Bachmann, G., Grauert, G., Kramm, U., Lork, A., y Miller, H. 1987. El magmatismo del Cámbrico Medio/Cámbrico Superior en el basamento del Noroeste Argentino: Investigaciones isotópicas y geochonológicas sobre los granitoides de los complejos intrusivos de Santa Rosa de Tastil y Cañaní. Actas X Congreso Geológico Argentino, 4:125-127. Tucumán.
- Barker, F., y Arth, J.G. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suite. *Geology*, 4: 596-600.
- Blasco, G., y Zappettini, E. 1995. Hoja Geológica San Antonio de los Cobres, Jujuy. SEGEMAR. *Boletín* 217, 126 pp.
- Borello, A.V. 1969. Los geosinclinales en la Argentina. Dirección Nacional de Geología, Anales 14, 189 pp.
- Borello, A.V. 1971. The Cambrian of South America. In: Holland, C.E. (ed.): Cambrian of the New World, 385-438. *Intercience*, London.
- Brown, G.C., Thorpe, R.S., y Webb, P.C. The geochemical characteristics of granitoids in constrasting arcs and comments on magma sources. *Journal of geological Society of London*,141: 423-426.
- Campbell, I.H., y Turner, J.S. 1987. A laboratory investigation of assimilation at the top of a basaltic magma chamber. *Journal Geology*, 85(2): 155-172.
- Cisterna, C. 1986. Contribución al conocimiento geológico de la región comprendida en la localidad de La Angostura, departamento San Carlos, Cordillera Oriental, Provincia de Salta. *Trabajo Final de licenciatura*. Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (inédito).
- Coira, B., Davidson, J., Mpodozis, C., Ramos, V. 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. *Earth Science Re*views 18: 303-332.
- Damm, K.W., Pichowiak, S., y Todt, W. 1986. Geochemie, Petrologie und Geochronologie der Plutonite und des metamorphen Grundgebirges in Nordchile. Berliner Geowissenchaften Abhandlungen. (A) 66: 73-146.
- El Bouseily, A.M., y El Sokkary, A.A. 1975. The relation between Rb, Ba and Sr in granitic rocks. *Chemical Geology*.16: 207-219.

- Escayola, M.P., van Staal, C.R., Davis. W.J.2011. The age and tectonic setting of the the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. *Journal of South American Earth Sciences.* 32: 438-459.
- Faure, G. 1986. Principles of isotope geology. 2 Aufl, XV, 589 pp. Wiley & Sons, New York.
- Faure, G., y Powell, J.L. 1972. Strontium isotope geology. In: *Minerals, Rocks and Inorganic Materials*, vol. 5: 188 pp. Springer, Berlin.
- Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., y Frost, C.D. 2001. A Geochemical Classification for Granitic Rocks. *Journal of Petrology*, 42(11): 2033-2048.
- Galliski, M.A. 1983. Distrito minero El Quemado, departamento La Poma y Cachi, provincia de Salta. I: El basamento del tramo septentrional de la Sierra de Cachi. Revista de la Asociación Geológica Argentina, 38(2): 209-224.
- Galliski, M.A., Toselli, a.J., Saavedra, J. 1990. Petrology and geochemistry of the Cachi high-alumina trondhjemites, northwestern Argentina. In: Kay, M. S., y Rapela, C.W. (eds.). Plutonism from Antarctica to Alaska. *Geological Society of America, Special Paper* 241: 91-100.
- Galliski, M. A. y Miller C. F. 1989. Petrogénesis de las trondhjemitas de Cachi: condicionamientos impuestos por elementos de tierras raras e implicancias tectónicas. *Reunión Geotransectas de América del* sur Actas 58-62, Mar del Plata.
- Grauert, B., Hänny, R., y Soptrajanova, G. 1974. Geochronology of a polymetamorphic and anatectic gneiss región: The Moldanubicum of the area Lam-Deggendorf, Eastern Bavaria, Germany. *Contributions to Mineralogy and Petrology*, 45: 37-63.
- Halliday, A.N, y Stephens, W.E. 1984. Crustal controls on the genesis of the 400 Ma old Caledonian granites. *Physical Earth Planetary International.* 35: 89–104.
- Halpern, M., y Latorre, C.O. 1973. Estudio geocronológico inicial de rocas del Noroeste de la República Argentina. Revista Asociación Geológica Argentina, 28: 195-205.
- Hauser, N. 2011. Petrología y geología isotópica de las rocas ígneas y estudios de proveniencia (U-Pb y Lu-Hf) de las rocas meta-sedimentarias del basamento del Paleozoico inferior en las áreas de Tastil, Niño Muerto, Río Blanco y Río Grande, Cordillera Oriental, Noroeste Argentino. *Tesis Doctoral* (inédita). 248 p. Universidad Nacional de Salta.
- Hongn, F.D., y Seggiaro, R.E. 2001. Hoja Geológica 2566-III, Cachi. Provincias de Salta y Catamarca. *Boletín 248*, 93 pp. SEGEMAR. Buenos Aires.
- Huppert, H.E., y Sparks, R.S.J. 1988. Melting the roof of a chamber containing a hot turbulently convecting fluid. *Journal Fluids Mechanical*, 188: 107-131.

- Ježek, P, A.P. Willner, A.P., Aceñolaza, F.G., y Miller, H. 1985. The Puncoviscana trough - a large basin of Late Precambrian to Early Cambrian age on the Pacific edge of the Brazilian shield. *Geologische Rundschau* 74: 573-584.
- Ježek, P. 1990. Análisis sedimentológico de la Formación Puncoviscana entre Tucumán y Salta. In: Aceñolaza, F.G., Miller, H., y Toselli, A.J. (Eds). El Ciclo Pampeano en el Noroeste Argentino. Serie Correlación Geológica 4: 9-35.
- Langmuir, C.H., Vocke, R.D., Hanson, G.N., y Hart, S.R. 1978. A general mixing equation with applications to Iceland basalts. *Earth Planetary Sciences Letters*, 37: 380-392.
- Lork, A., Grauert, B., Kramm, U., y Miller, H. 1991. U-Pb-investigations of monazite and polyphase zircon: implications for age and petrogenesis of trondhjemites of the southern Cordillera Oriental, NW-Argentina. 6° Congreso Chileno Actas, 1: 398-402. Viña del Mar.
- Lork, A., y Bahlburg, H. 1993. Precise U-Pb ages of monazite from the Faja Eruptiva de la Puna Oriental and the Cordillera Oriental, NW Argentina. XII Contreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, Acta 4: 1-6. Mendoza.
- Lork, A., Miller, H., y Kramm, U. 1989. U-Pb zircón and monazite ages of the La Angostura granite and the orogenic history of the northwest Argentine basement. *Journal of South American Earth Sciences*, 2/2: 147-153.
- Lork, A., Miller, H., Kramm, U., y Grauert, B. 1990. Sistemática U-Pb de corcones detríticos de la Fm. Puncoviscana y su significado para la edad máxima de sedimentación en la Sierra de Cachi (prov. de Salta, Argentina). In: Aceñolaza, F.G., Miller, H., y Toselli, A.J. (eds.). El Ciclo Pampeano en el Noroeste Argentino. Serie Correlación Geológica, 4: 199-208. Tucumán.
- Maniar, P.D., and Piccoli, P.M. 1989. Tectonic discrimination of granitoids. *Geological Society of America Bulletin.* 101: 635-643.
- Méndez, V., Nullo, F.E., Otamendi, J. 2006. Geoquímica de las Formaciones Puncoviscana y Cachi, Sierra de Cachi, Salta. Revista de la Asociación Geológica Argentina, 61(2): 256-268.
- Mon, R., y Hongn, F. 1988. Caracterización estructural de la Formación Puncoviscana dentro del basamento del norte argentino. *Revista de la Asociación Geológica Argentina*, 43: 124-127.
- Mon, R., y Hongn, F. 1996. Estructura del basamento proterozoico y paleozoico inferior del norte argentino. *Revista de la Asociación Geológica Argentina*, 51(1): 1-10.
- Mon, R., Gutiérrez, A.A., y Cisterna, C.E. 2017. Estructura de los Andes del Norte Argentina y su entorno regional, 181 pp. *Editorial Académica Española*.

- Morimoto, M. 1988. Nomenclature of pyroxenes. Mineralogical Magazine 52: 535-550.
- Moya, C. y Salfity, J., 1982. Los Ciclos Magmáticos en el Noroeste Argentino. *Actas 5º Congreso Latinoamericano de Geología*, III:523-526.
- Omarini, R.H., y Alonso, N.R. 1987. Lavas en la Formación Puncoviscana, Río Blanco, Salta, Argentina. X Congreso Geológico Argentino. Tucumán. Actas 4: 292-295.
- Pasteels, P. 1970. Uranium-Lead radioactive ages, of monazite and zircon from the Ville Carolles Granite (Normandy). A case of zircon-monacite discrepancy. *Eclogae geologie Helvetique*, 63(1): 231-237.
- Pearce, J.A., Harris, N.B.W., y Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25(4): 956-983.
- Peterman, Z.E. 1979. Strontium isotope geochemistry of Late Archean to Late Cretaceous tonalities and trondhjemites, In: Barker, F. (ed.). Trondhjemites, dacites, and related rocks. Developments in Petrology, 6: 133-147. Amsterdam, Elsevier.
- Rudnick, R.L., y Gao, S. 2003. The Crust. In: Davis, A.M., Holland, H.D., y Turekian, K.K. (eds.). Treatise on Geochemistry, vol. 3: 569-659.
- Salfity, J.A., Omarini, R.H., Baldis, B., y Gutierrez, W. 1975. Consideraciones sobre la evolución geológica del Precámbrico y Paleozoico del norte argentino. II Congreso Iberoamericano de Geología Económica, 4: 341-361. Buenos Aires.
- Schärer, U., y Allégre, C.J. 1982. Uraniun-lead system in fragments of a single zircón grain. *Nature*, 295: 585-587.
- Schön, C. 1991. Magmenentwickung und Intrusionsgeschichte im Südteil der Sierra de Cachi, NW – Argentinien. Inaugural-Dissertation zur Erlangung des Doktorgrades der Geowissenschaftlichen. Fakultät der Ludwig-Maximiliams-Universität München. (Tesis Doctoral).
- Schön, C., y Miller, H. 1990. The evolution of the lower Paleozoic trondhjemite-granite suites SW of Ca-

Recibido: 05 de Junio 2019 Aceptado: 26 de Julio 2019 chi, NW, Argentina. *Symposium International Geodinamique Andine. Colloques et Séminaires*, Grenoble, France, 363-366.

- Smith, D.L. 1982. Review of the tectonic history of the Florida basement. Tectonophysics, 88(1-2): 1-22.
- Sola, A.M., Becchio, R.A., y Pimentel, M.M. 2010. Leucogranito Pumayaco:anatexis cortical durante el ciclo orogénico Famatiniano en el extremo norte de la sierra de Molinos, provincia de Salta. Revista de la Asociación Geológica Argentina, 66 (1-2): 206-224.
- Toselli, A.J. y Rossi de Toselli, J.N. 1990. Metamorfismo de baja presión en las Sierras Pampeanas y Cordillera Oriental, en el NW de Argentina. Relaciones con el plutonismo granítico. XI Congreso Geológico Argentino, Acta 1: 174 177. San Juan.
- Toselli, A., y Rossi de Toselli, J. N. 1990. Metamorfismo de la Formación Puncoviscana en las provincias de Salta y Tucumán, Argentina. V Congreso Latinoamericano de Geología, Acta II: 37 52. Argentina.
- Turner, J.C. 1960. Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín de la Academia Nacional de Ciencias de Córdoba, 42:77-126.
- Turner, J.C., 1961. Estratigrafía del Nevado de Cachi y sector oeste (Salta). *Acta Geológica Lilloana*, 3: 191-226. Tucumán.
- Turner, J.C. 1972. Cordillera Oriental. In: Leanza, A.F. (ed.). Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba, 117-142.
- Turner, J.C., y Mon, R. 1979. Cordillera Oriental. In: Turner, J.C. (Ed.). Geología Regional Argentina. Publicación Especial. *Academia Nacional de Ciencias en Córdoba*, 1: 57-94.
- Winchester, J.A., y Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using inmobile elements. *Chemical Geology*, 20: 325-343.
- Yoder, H.S., Stewart, D.B.Jr., y Smith, J.R. 1957. Ternary feldspars. Carnegie Institute Washington. *Yearbook* 56: 206-214.

Apendice

Tabla 1

T632	T-T	72,67	0,74	16,53	1,39	:	0,02	0,55	1,64	5,19	0,98	0,11	0,36	100,18		49	602	16	129							20	25	
T616	1-T	72,54	0,26	17,13	1,34	I	0,01	0,46	4,53	5,23	0,65	0,05	0,55	99,75		53	763	83	162							19	20	
T614	1-1	72,73	0,17	17,17	1,21	1	0,02	0,41	1,76	5,29	0,56	0,05	0,44	99,81		40	641	17	143							17	29	
T610	T-T	73,35	0,26	16,54	1,60		0,02	0,43	1,18	5,04	1,35	0,06	0,52	100,35	71	57	566	16	134							18	28	
T596	T-T	72,14	0,18	16,92	1,98		0,03	0,46	2,11	5,09	0,86	0,07	0,44	100,28	06	45	536	21	138							12	23	
T590	T-T	71,68	0,23	16,96	1,43	I	0,02	0,28	2,82	4,70	1,10	0,08	0,60	99,90		101	717	15	193							24	30	
T585	1-T	69,12	0,32	16,86	3,03	I	0,04	1,44	2,37	4,48	1,40	0,06	0,47	99,59	149	48	618	20	153					15		40	22	
T562	1-T	72,17	0,14	16,84	1,33	I	0,02	0,53	2,40	5,21	0,97	0,07	0,50	100,18		46	610	19	138							14	20	
T557	T-T	70,32	0,18	16,92	1,86	-	0,02	0,92	3,44	4,89	0,79	0,06	0,55	99,95		47	680	16	160					14		20	29	(
T457	T-T	72,46	0,16	16,32	1,66	1	0,03	0,53	2,58	5,13	0,92	0,06	0,63	100,48		45	551	13	134					10		16	20	l
T450	T-T	73,80	0,10	15,84	1,03	-	0,02	0,48	2,15	5,01	0,54	0,05	0,38	99,40	20	33	568	15	168							15	14	
T437	1-T	73,24	0,18	15,57	1,76	1	0,02	0,70	2,77	5,11	0,69	0,06	0,06	100,50		37	560	16	152				10			13	22	
T278	1-T	72,89	0,20	15,00	2,03	1	0,04	0,65	1,81	4,79	1,05	0,07	0,59	99,12		68	682	15	165				16			26	21	
T216	T-T	71,96	0,28	16,21	1,61	-	0,01	0,49	2,80	5,35	0,42	0,05	0,31	99,49		31	826	15	169							12	17	
T215	1-T	72,03	0,10	17,05	1,05	1	0,01	0,13	2,48	5,71	0,60	0,06	0,33	99,55		39	730	13	133							6	28	
T214	1-T	71,19	0,13	17,34	1,32	:	0,01	0,34	1,34	5,89	1,11	0,06	0,66	99,39		56	502	15	135							11	20	
T197	1-T	72,40	0,11	16,50	1,20	1	0,02	0,27	2,67	5,58	0,62	0,04	0,24	99,72	60	33	625	14	135							10	35	
T087	1-T	72,22	0,13	17,37	1,15	:	0,02	0,41	3,02	5,24	0,86	0,08	0,29	100,79		49	596	14	136							14	31	
T068	1-T	71,57	0,15	17,13	1,20	I	0,02	0,31	2,42	5,14	0,90	0,60	0,50	99,40		96	550	21	145							11	28	(
		Si02	Ti02	AI203	Fe203	FeO	MnO	MgO	CaO	Na2O	K20	P205	LOI	Total	Ba	Rb	ي ا	۲	Zr	Pb	Ga	Zn	Cu	ïZ	^	Ь	S	ļ

Tabla 1. Contenidos de elementos mayores menores y trazas de los intrusivos. / Table 1. Contents of minor major elements and traces of the intrusive.

	0	_		0	N 1		-	N 1		<i>.</i>	-	-		_	T	-	_	_	_	I	Т	-	~		(0)		
Co	Cr	V	Vi	Cu	Zn	Ga	۶þ	Zr	Y	Sr	٦b	За	Total	_0	² 205	〈 2O	Va2O	CaO	MgO	MnO	- eO	⁼ e2O3	AI2O3	TiO2	SiO2		
23	19							169	17	770	51		99,85	0,28	0,07	0,80	5,56	2,93	0,62	0,02	-	1,67	17,33	0,19	70,38	T-T	TM11
27	16		13					144	16	615	47		99,91	0,44	0,07	0,91	5,00	3,16	0,64	0,03	I	1,35	18,07	0,18	70,06	T-T	TM12
20	18							164	16	721	45		100,82	0,66	0,09	0,80	6,41	2,87	0,53	0,02	I	1,52	18,64	0,15	69,13	T-T	TM13
4	11	72	12	44	186	12	34	104	95	725	42	514	100,57	0,44	0,10	1,01	4,79	3,71	0,82	0,24	0,63	1,11	14,17	0,16	73,37	T-T	T022
25	79	475	26	43	49	2	6	99	112	577	56	965	100,32	0,52	0,06	1,05	5,85	3,64	0,41	0,05	0,17	1,02	12,69	0,13	74,73	T-T	T0111
6	21	195	13	19	136	16	27	108	81	682	33	848	99,27	0,30	0,05	0,68	5,47	3,54	0,36	0,01	0,16	1,02	14,19	0,15	73,34	T-T	T0112
6	52	165	თ	52	215	17	56	160	66	606	59	1196	100,22	0,35	0,06	1,03	5,47	3,71	0,53	0,06	0,21	1,10	12,26	0,15	75,29	I-L	T0113
ω	4	158	11	34	163	18	29	143	26	649	54	1183	100,14	0,52	0,07	0,92	5,68	3,82	0,55	0,04	0,20	1,06	13,82	0,16	73,30	L-L	T0114
44	10	367	13	51	190	14	29	20	97	471	51	382	100,76	0,76	0,09	0,94	4,69	2,38	0,30	0,10	0,12	0,91	14,99	0,12	75,36	T-T	T0115
7	9	106	12	29	159	15	35	71	100	509	53	351	100,04	0,71	0,13	1,24	4,06	2,79	0,34	0,01	0,14	0,96	14,73	0,16	74,77	T-T	T0118
	17	149	7	43	181	19	46	152	101	620	52	1430	100,52	0,30	0,08	1,01	4,78	2,50	0,65	0,10	0,20	1,02	14,75	0,15	74,98	T-T	T0119
	14	50	15	44	181	9	20	39	111	80	275	825	100,29	0,81	0,17	4,51	4,57	0,87	0,27	0,06	0,10	0,82	12,69	0,03	75,39	G-G	G003
	1	156	15	50	204	10	41	104	140	267	63	1000	100,36	0,80	0,21	5,51	4,44	0,90	0,42	0,04	0,16	1,00	14,31	0,07	72,50	G-G	G005
	24	70	15	32	164	13	14	71	68	76	159	1132	100,53	0,85	0,23	4,77	4,41	0,64	0,36	0,05	0,13	0,90	14,57	0,05	73,57	G-G	G008
33	33	25	15	20	132	16	4	19	71	38	329	673	100,67	0,86	0,35	4,20	4,48	0,42	0,17	0,04	0,11	0,93	15,10	0,05	73,96	G-G	G044
38	14	110	14	38	156	13	2	22	61	49	413	534	100,50	0,64	0,28	3,93	4,28	0,38	0,10	0,07	0,07	0,76	14,15	0,02	75,82	G-G	G045
18	36	49	17	21	148	13	11	85	96	76	281	939	100,68	0,79	0,26	4,45	4,23	0,62	0,41	0,03	0,13	0,90	13,69	0,06	75,11	G-G	G048
2	28	916	8	24	74	10	15	85	84	161	220	882	100,38	0,93	0,22	4,15	3,73	0,63	0,25	0,01	0,04	0,55	13,78	0,01	76,08	G-G	G053

T-T: Tonalita-trondhjemita. G-G: Granodiorita-granito.

																										-	
TV98	1-T	74,51	0,06	12,60	0,76	0,08	0,05	0,23	4,24	6,15	0,53	0,04	0,50	99,75	320	33	612	91	77	30	12	167	43	14	141	9	7
TV96	T-T	74,54	0,07	13,20	0,90	0,12	0,03	0,29	4,09	5,15	0,52	0,05	0,35	99,31	1640	34	648	117	188	34	16	180	37	12	215	10	2
TV94	T-T	78,68	0,03	12,28	0,81	0,08	0,04	0,12	2,15	5,41	0,65	0,05	0,45	100,75	1463	26	347	180	108	58	11	245	57	14	196	11	11
TV91	T-T	74,53	0,06	15,12	0,72	0,07	0,01	0,27	2,93	4,83	0,64	0,06	0,48	99,72	582	146	380	111	73	32	11	198	49	14	109	22	39
TV88	1-T	76,66	0,06	14,26	0,89	0,11	0,01	0,20	2,21	4,90	0,56	0,08	0,54	100,48	127	27	519	92	73	27	17	167	40	11	261	7	œ
TV87	T-T	74,87	0,08	14,00	0,78	0,08	0,01	0,17	3,36	5,12	0,66	0,06	0,68	99,87	1381	32	673	58	156	50	11	247	58	17	248	16	14
TV33	T-T	74,45	0,10	14,95	0,75	0,08	0,01	0,22	3,28	4,72	0,43	0,07	0,50	99,56	1180	23	89	122	117	46	13	211	53	14	174	6	œ
TV28	T-T	73,56	0,12	15,90	0,96	0,18	0,01	0,61	2,89	4,45	0,59	0,09	0,39	99,75	863	32	680	118	129	30	12	190	49	14	121	2	10
TV27	T-T	73,51	0,17	14,14	1,25	0,29	0,03	0,63	3,41	5,03	1,04	0,08	0,88	100,46	1261	63	554	96	170	45	11	163	43	7	234	58	2
TV25	1-T	74,00	0,10	14,16	0,88	0,12	0,03	0,36	3,43	5,93	0,69	0,06	0,41	100,17	615	34	597	95	84	35	17	179	40	12	11	6	5
G188	ი ი	74,97	0,07	13,48	0,98	0,14	0,05	0,29	0,63	4,13	4,81	0,25	0,85	100,65	1033	270	77	109	65	22	9	160	35	16	195	15	19
G173	ი ი	75,16	0,08	14,86	0,77	0,09	0,01	0,36	0,31	3,46	4,51	0,27	0,88	100,76	811	210	186	93	96	16	10	87	26	œ	978	36	2
G121	ი ი	74,89	0,04	12,50	0,77	0,09	0,05	0,34	1,12	4,50	4,58	0,15	0,78	99,81	1020	191	178	104	43	41	6	177	43	16	59	21	36
G065	ე ე	75,19	0,09	14,43	0,93	0,14	0,01	0,40	0,42	2,92	4,91	0,41	0,78	100,63	1069	391	49	66	47	11	13	141	24	14	06	20	14
G059	ი ი	75,94	0,05	13,27	0,85	0,10	0,05	0,22	0,47	4,07	4,52	0,27	0,89	100,70	871	357	68	76	34	7	11	39	26	15	54	23	17
G056	ი ი	71,49	0,08	16,50	1,10	0,18	0,01	0,36	0,39	3,80	5,35	0,39	1,16	100,81	214	302	79	58	21	14	15	130	17	13	200	17	12
G055	ი ი	73,87	0,10	15,17	1,0	0,15	0,01	0,32	0,40	3,43	4,50	0,33	0,92	100,20	511	249	88	122	27	17	9	179	40	20	2	35	86
G054	с С	75,64	0,07	13,69	0,90	0,11	0,02	0,26	0,46	3,50	4,76	0,20	1,02	100,63	606	155	472	84	115	26	10	161	32	15	165	16	14
		Si02	TiO2	AI203	Fe203	FeO	MnO	MgO	CaO	Na2O	K20	P205	LOI	Total	Ba	Rb	Sr	~	Zr	Pb	Ga	Zn	Cu	İN	>	Cr	പ്

င့	Cr	V	N	Cu	Zn	Ga	Pb	Zr	Y	Sr	Rb	Ва	Total	LOI	P205	K20	Na2O	CaO	MgO	MnO	FeO	Fe2O3	AI2O3	TiO2	SiO2		
5	22	68	14	33	168	17	24	137	113	611	37	1128	100,26	0,59	0,07	0,68	5,44	3,13	0,36	0,02	0,11	0,82	14,27	0,08	74,69	T-T	TV99
85	ε	59	14	62	258	14	33	118	165	361	42	678	101,07	0,72	0,02	0,70	6,78	1,56	0,14	0,08	0,07	0,74	12,62	0,06	77,58	T-T	TV137
23	4	134	13	48	193	13	28	53	109	436	30	349	99,74	0,20	0,05	0,80	5,14	3,26	0,19	0,06	0,13	0,99	12,27	0,07	76,58	T-T	TV165
7	17	141	13	53	214	13	47	126	128	650	28	1185	100,72	0,72	0,05	0,41	6,26	2,95	0,26	0,01	0,07	0,70	14,52	0,07	74,70	T-T	TV166
53	38	174	20	27	133	7	6	64	106	519	27	200	101,12	0,73	0,09	0,62	5,22	2,05	0,48	0,01	0,19	1,06	15,26	0,13	75,28	T-T	TV167
60	35	37	11	12	176	14	23	145	95	123	195	534	102,06	1,23	0,15	3,99	2,51	2,02	1,87	0,11	2,10	2,42	14,17	0,59	70,90	G	GR06
66	14	28	11	8	178	16	20	171	101	133	206	765	101,33	0,96	0,16	3,92	2,32	2,04	1,56	0,10	1,92	2,46	14,33	0,58	70,98	G-G	GR159
39	22	250	17	61	280	14	42	183	217	537	60	1733	100,40	0,79	0,10	1,01	4,21	1,96	0,12	0,01	0,10	0,92	14,55	0,10	76,54	G-G	TVP24
5	30	1342	4	44	106	22	17	76	87	447	100	861	99,28	0,32	0,08	0,86	4,58	3,48	0,46	0,01	0,29	1,31	15,53	0,22	72,14	T-T	TVP33
23	ე	151	12	46	202	15	32	116	124	536	56	1077	99,99	0,80	0,05	1,01	5,61	3,50	0,20	0,03	0,14	1,02	13,64	0,10	73,89	T-T	TVP168
17	17	195	10	48	231	16	51	192	138	603	59	1493	100,60	0,51	0,06	1,14	4,67	2,79	0,78	0,05	0,36	1,32	12,75	0,10	75,98	L-L	TH81
21	31	161	14	45	195	10	30	72	113	264	162	538	100,87	0,95	0,10	1,43	4,80	2,22	89'0	0,04	0,26	1,15	13,67	0,16	75,41	T-T	TH176
14	25	273	13	24	147	14	21	93	97	340	125	740	99,85	0,55	0,07	0,97	5,23	3,94	0,52	0,07	0,19	1,05	12,09	0,13	75,04	T-T	TH177
10	52	286	12	47	166	5	39	158	113	620	65	995	100,34	0,57	0,11	1,20	4,26	3,25	0,81	0,04	0,38	1,36	13,18	0,20	74,98	T-T	TH178
105	69	69	8	41	217	12	22	222	120	124	162	1076	99,69	0,68	0,19	4,34	4,17	1,19	0,21	90,0	80,0	0,79	12,30	0,04	75,64	I-L	TH191
5	19	46	13	20	32	18	23	74	75	574	29	391	100,13	0,65	0,09	0,54	4,85	3,11	0,46	0,01	0,13	0,89	14,65	0,10	74,65	T-T	TC069
4	18	95	14	29	153	14	16	129	99	375	120	1212	100,08	0,54	0,08	0,66	4,51	2,62	0,18	0	0,08	0,79	14,58	0,09	75,95	T-T	TC101

TVP90	1-T	74,72	0,18	13,50	1,14	0,21	0,04	0,44	3,26	4,56	1,34	0,08	0,81	100,28	1203	55	401	120	171	48	18	205	43	10	111	13	12
TVP32	T-T	73,66	0,15	14,88	1,10	0,20	0,01	0,45	2,88	4,92	1,32	0,07	0,65	100,29	512	116	180	134	101	17	9	127	42	47	971	46	70
TO106	T-T	71,58	0,25	13,74	1,33	0,41	0,05	1,03	4,94	5,10	0,78	0,08	0,27	99,56	1206	42	815	64	161	38	22	146	25	9	133	14	2
GA39	9-0 0-	74,44	0,22	13,84	1,51	0,39	0,01	0,48	1,46	3,22	3,99	0,11	0,62	100,29	756	150	66	124	118	36	2	194	42	11	71	10	87
GA38	ი ი	74,40	0,14	13,47	1,40	0,35	0,03	0,55	1,91	3,23	3,78	0,10	0,76	100,12	879	118	157	133	110	35	10	173	35	14	88	13	61
T0155	1-1	75,25	0,13	14,23	1,04	0,17	0,03	0,37	2,53	5,42	0,87	0,07	0,76	100,87	1061	37	592	150	123	37	13	227	49	17	135	21	13
GRV10	9-0 0-	64,67	0,76	14,47	2,93	4,02	0,15	3,50	5,13	2,10	3,05	0,20	0,93	101,91	586	147	285	50	140	7	17	127	37	13	25	18	30
GRV09	ე ე	63,10	0,73	13,86	2,95	3,93	0,14	3,20	6,47	2,44	2,56	0,21	0,71	100,30	409	101	292	48	71	40	12	154	9	9	24	104	47
T0107	T-T	74,28	0,16	13,73	1,12	0,20	0,01	0,41	3,43	4,26	1,45	0,08	0,37	99,50	1019	56	705	95	114	38	15	159	32	13	169	6	7
T0041	1-T	76,21	0,19	13,51	1,28	0,38	0,02	1,02	2,44	3,72	1,37	0,09	0,76	100,99	1284	103	568	150	176	34	10	224	47	18	251	15	18
GRC18	ე ე	75,22	0,10	12,37	0,79	0,08	0,03	0,22	0,84	3,79	5,59	0,13	0,75	99,91	1066	213	87	107	76	32	12	150	37	11	52	6	42
GRC16	ი ე	70,85	0,58	15,37	2,45	2,13	0,10	1,84	2,12	2,59	4,11	0,26	1,22	103,62	612	227	55	102	168	30	17	207	22	œ	60	53	181
TM184	ი ი	74,16	0,06	15,13	0,88	0,09	0,01	0'09	0,28	3,97	4,99	0,17	0,71	100,54	488	275	89	06	31	12	12	176	45	14	264	6	32
GI183	ი ე	74,63	0,04	13,45	0,84	0,11	0,01	0,33	0,85	4,02	4,94	0,13	0,46	99,81	1086	192	94	130	11	22	6	146	24	18	177	35	15
GI181	ი ი	74,54	0'09	14,55	1,08	0,13	0,01	0,04	0,73	3,42	5,24	0,14	0,72	100,69	1066	180	78	85	45	2	8	02	27	20	220	58	10
GI128	ი ი	74,44	0,06	12,76	1,03	0,18	0,14	0,50	1,01	2,38	6,14	0,42	0,28	99,34	745	253	191	74	89	13	13	98	32	4	1079	18	4
TC151	T-T	77,67	0,10	12,67	0,97	0,15	0,02	0,39	0,81	3,83	3,94	0,11	0,77	100,43	257	87	258	126	33	4	3	92	4	23	172	62	85
		Si02	Ti02	AI203	Fe203	FeO	MnO	MgO	CaO	Na2O	K20	P205		Total	Ba	Rb	Sr	≻	Zr	Pb	Ga	Zn	Cu	ïZ	>	C	ප

-

Tabla 2

I I	Tierras Raras	22b	22c	22d	33a	42a		51	54a	55b	57a	57b	69a	81a
La 5,474 5,405 2,601 2,761 2,482 0,227 0,338 1,405 0,980 1,284 2,425 6,484 Pr 1,405 1,455 - - 0,664 0,200 0,100 0,550 0,396 0,396 0,376 7,786 Sm 1,763 1,246 0,439 0,386 0,425 - 0,129 0,412 0,292 - 1,141 Su 0,386 0,425 - 0,179 0,426 0,430 0,375 0,532 1,623 0,505 0,513 0,532 1,623 0,372 0,374 0,377 0,375 <		1	1	1	1	1		1				1		
Ce 12.020 12.976 16.771 1.092 0.745 4.418 1.995 2.528 6.786 1.420 Nd 6.041 6.351 2.323 2.582 3.172 0.550 0.550 0.356 0.395 0.781 2.435 7.786 Sm 1.781 1.240 0.4390 0.386 0.425 0.042 0.041 0.412 0.212 0.179 0.372 Gd 1.307 1.141 0.520 0.566 1.717 0.257 0.633 0.551 0.552 0.176 0.727 1.79 0.372 Tb - 0.363	La	5.474	5.405	2.010	2.761	2.48	2	0.22	7 0.338	1.405	0.960	1.264	2.452	6.048
Pr 1.405 i - 0.664 0.200 0.100 0.550 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.425 - 0.128 0.412 0.228 0.412 0.282 0.412 0.282 0.412 0.282 0.412 0.282 0.383 0.353 0.353 0.353 0.353 0.353 0.353 0.355 0.554 0.42 0.412 0.773 0.326 0.448 0.959 0.171 0.121 0.775 0.422 0.275 0.374 2.87 To<	Ce	12,020	12,970	3,759	4,758	6,17	1	1,09	2 0,745	4,418	1,995	2,532	6,756	14,930
Nd 6,041 6,351 2,232 2,582 3,172 0,583 0,428 0,428 0,328 0,428 0,328 0,428 0,417 0,412 0,292 1,318 Eu 0,360 0,376 0,158 0,314 0,255 0,025 0,042 0,080 0,060 0,080 0,0170 0,327 Tb - <td>Pr</td> <td>1,405</td> <td>1,455</td> <td>-</td> <td>-</td> <td>0,56</td> <td>4</td> <td>0,20</td> <td>0 0,100</td> <td>0,550</td> <td>0,356</td> <td>0,395</td> <td>0,781</td> <td>2,167</td>	Pr	1,405	1,455	-	-	0,56	4	0,20	0 0,100	0,550	0,356	0,395	0,781	2,167
Sm 1.763 1.246 0.439 0.368 0.425 · 0.122 0.417 0.412 0.222 · 1.818 Eu 0.360 0.376 0.158 0.255 0.025 0.039 0.050 0.0139 0.525 1.823 Gd 1.307 1.141 0.520 0.564 · 0.178 0.225 0.089 0.076 0.532 1.823 Th - - · · 0.095 0.112 0.751 0.722 0.042 0.372 0.423 0.44	Nd	6,041	6,351	2,323	2,582	3,17	2	0,55	3 0,560	1,342	0,999	1,979	2,735	7,786
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	1,763	1,246	0,439	0,368	0,42	5	-	0,129	0,417	0,412	0,292	-	1,818
Gd 1.307 1.141 0.520 0.564 . 0.178 0.257 0.339 0.505 0.131 0.522 1.822 Tb - 0.063 0.012 0.026 0.026 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.066 0.036 0.068 0.036 0.068 0.027 0.066 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036	Eu	0,360	0,376	0,158	0,134	0,25	5	0,02	5 0,042	0,086	0,060	0,089	0,179	0,372
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gd	1,307	1,141	0,520	0,564	-		0,17	8 0,257	0,839	0,505	0,513	0,532	1,823
Dy 1.028 0.738 0.236 0.148 0.929 0.171 0.725 0.824 0.317 1.297 Ho 0.093 0.112 0.280 0.423 0.423 0.423 0.423 0.552 - 0.666 0.022 0.066 0.065 0.065 - - Total 0.042 0.023 0.542 0.112 0.032 0.042 0.066 0.023 0.041 0.044 0.064 0.066 0.030 0.471 Lu 0.042 - 0.0591 7.19 1.847 0.338 0.293 0.686 0.492 0.692 2.554 2.812 Lu 0.044 0.030 0.380 0.384 0.6 - 0.326 0.206 0.146 0.305 - 0.205 Tierras Raras 81b 844 86a 1002 1006 110a 110b 112a 113a 133b 13a5b La I I I	Tb		-	-	-	-		-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dy	1,028	0,733	0,236	0,148	0,95	9	0,17	8 0,121	0,751	0,729	0,842	0,317	1,297
Er 0.282 0.176 0.429 0.155 0.564 0.170 0.289 0.423 0.0421 0.065 - - Yb 0.325 0.237 0.542 0.143 0.633 0.163 0.283 0.041 0.041 0.041 0.044 - - 0.471 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.042 0.021 0.042 0.023 0.058 0.640 0.068 0.064 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.402 0.687 0.262 2.524 2.821 EurEur 0.034 0.360 0.364 0.66 - 0.032 0.365 - 0.205 - 0.205 Tierras Raras 81b 84a 86a 1000 100b 110b 112a 113b 133b 136b La 1 1 1 1 1 1 1 1 1	Но		0,162	-	-	-		0,09	3 0,112	0,228	-	0,275	0,074	-
Tm 0.056 0.022 0.066 0.065 0.065 Vb 0.325 0.237 0.542 0.041 0.042 0.042 0.042 0.044 0.064 0.064 0.066 0.030 0.067 Total 30.047 30.252 10.485 11.625 11.323 2.922 3.022 0.080 0.729 8.826 3.286 3.242 Eu/Eu' 0.644 0.947 1.009 1.921 - - 0.682 0.480 0.469 0.687 - 0.687 </td <td>Er</td> <td>0,282</td> <td>0,176</td> <td>0,429</td> <td>0,155</td> <td>0,56</td> <td>4</td> <td>0,17</td> <td>0 0,289</td> <td>0,423</td> <td>0,423</td> <td>0,582</td> <td>-</td> <td>0,466</td>	Er	0,282	0,176	0,429	0,155	0,56	4	0,17	0 0,289	0,423	0,423	0,582	-	0,466
Yb 0.325 0.237 0.542 0.163 0.163 0.283 0.411 0.411 - - 0.471 Lu 0.047 30.252 10.485 11.625 15.323 2.922 3.022 10.999 6.728 8.829 13.856 37.245 LuLu) 4.073 - 0.964 0.64 0.640 0.586 0.460 0.586 2.824 2.825 Eu/Eur 0.694 0.64 0.6 - 0.326 0.206 0.146 0.305 - 0.205 Tierras Raras 81b 84a 86a 100a 106a 100b 110a 110b 112a 115a 133b 135b Ce 13.300 2.081 3.399 18.210 12.450 13.400 9.101 15.540 4.907 5.760 10.610 5.298 2.905 5.298 2.905 5.298 2.905 5.298 2.905 5.298 2.905 5.298 2.907 1.914 <td< td=""><td>Tm</td><td></td><td>-</td><td>-</td><td>-</td><td>0,05</td><td>6</td><td>0,02</td><td>2 -</td><td>0,065</td><td>0,065</td><td>-</td><td>-</td><td>-</td></td<>	Tm		-	-	-	0,05	6	0,02	2 -	0,065	0,065	-	-	-
Lu 0.042 - 0.069 0.012 0.024 0.021 0.026 0.066 0.060 0.066 0.060 0.066 0.066 0.068 0.672 8,829 13,856 37,245 Lulupin 4.073 - 0.0910 1,921 - - 0.692 0.436 0.460 0.598 2,554 2,821 EurEuri 0.0204 0.020 0.360 0.964 0.661 - 0.692 0.436 0.460 0.598 2,554 2,821 Tierras Rares 81b 84a 86a 100a 100a 110a 110b 112a 113b 133b 136b La 1 <th1< th=""></th1<>	Yb	0,325	0,237	0,542	0,143	0,63	3	0,16	3 0,293	0,411	0,411	-	-	0,471
Total 30.047 30.222 10.485 11.625 15.323 9.923 3.022 10.999 6.728 0.829 12.854 2.554 2.821 Eu/Eu/ 0.694 0.947 1.009 1.921 - - 0.632 0.436 0.462 0.6697 - 0.618 Eu/Eu/ 0.204 0.302 0.300 0.364 0.6 - 0.326 0.206 0.146 1.053 - 0.622 Tierras Raras 81b 84a 86a 100a 106a 106b 110a 110b 112a 115a 1334 1345 Ce 19.300 2.081 3.394 182.10 12.40 1.310 1.517 - 1.802 0.536 - 1.802 0.536 Nd 9.354 1.507 2.188 2.915 5.134 0.390 0.779 0.822 0.963 - 1.802 0.536 Sm 2.434 1.40 0.302 1.231	Lu	0,042	-	0,069	0,012	0,04	2	0,02	1 0,036	0,064	0,064	0,066	0,030	0,067
(LatLu)n 4.073 - 0.910 7.19 1.847 0.338 0.283 0.686 0.686 0.689 0.508 2.554 2.821 Eu/Sm 0.694 0.090 1.921 - - 0.692 0.648 0.492 0.697 - 0.618 Eu/Sm 0.204 0.302 0.360 0.364 0.66 1.068 1.108 1.108 1.133 1.365 Tierras Raras 81b 84a 86a 100a 106a 106b 110a 110b 112a 115a 1.335 1.365 Ce 19.300 2.081 3.399 18.210 12.450 1.3040 9.101 15.504 9.075 5.760 10.610 5.254 2.397 Sm 2.434 - - 1.301 1.567 - 1.808 0.779 2.831 2.905 5.296 2.397 Sm 2.434 - - - - - - -	Total	30,047	30,252	10,48	5 11,62	5 15,3	23	2,92	2 3,022	10,999	6,729	8,829	13,856	37,245
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(La/Lu)n	4,073	-	0,910	7,19	1,84	7	0,33	8 0,293	0,686	0,469	0,598	2,554	2,821
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eu/Eu*	0,694	0,947	1,009	1,921	-		-	0,692	0,436	0,402	0,697	-	0,618
Tierras Raras 81b 84a 86a 100a 106a 110a 110b 112a 115a 133b 136b I I I I I I I I I I II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Eu/Sm	0,204	0,302	0,360	0,364	0,6		-	0,326	0,206	0,146	0,305	-	0,205
Tierras Raras 81b 84a 86a 106a 106b 110b 110b 112a 113a 133b 133b La 8.088 1,145 1,577 2,25 4,604 5,555 4,688 6,985 2,248 2,951 5,134 2,350 Ce 19,300 2,081 3,399 18,210 12,450 13,040 9,101 15,564 4,907 5,760 10,610 2,524 Nd 9,354 1,507 2,188 2,391 5,766 0,023 4,841 7,797 0,828 0,963 - Sm 2,434 - - 1,274 0,522 1,140 0,466 0,300 0,414 0,133 0,134 0,302 0,213 0,324 0,907 0,209 0,414 0,135 - <td></td>														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tierras Raras	81b	84a	86a	100a	106a	10)6b	110a	110b	112a	115a	133b	136b
La 8.088 1.145 1.577 2.25 4.004 5.555 4.688 6.985 2.248 2.951 5.134 2.350 Ce 19.300 2.081 3.399 18.210 12.450 13.040 9.1312 2.064 0.558 - 1.802 0.536 Nd 9.354 1.507 2.188 2.391 5.706 0.023 4.841 7.797 2.831 2.905 5.298 2.337 Sm 2.434 - - 1.301 1.567 - 1.808 0.779 0.828 0.963 - <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td> </td> <td></td> <td> </td> <td>-</td> <td></td> <td></td> <td> </td> <td>1</td>										-				1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	La	8,088	1,145	1,577	2,25	4,604	5,	555	4,688	6,985	2,248	2,951	5,134	2,350
Pr 2,649 - 0,847 1,191 1,769 1,312 2,064 0.558 - 1,802 0,536 Nd 9,354 1,507 2,188 2,991 5,706 0,023 4,841 7,797 2,831 2,905 5,298 2,397 Sm 2,434 - - 1,301 1,567 1,808 0,779 0,828 0,963 - Eu 0,502 0,089 0,414 0,136 0,300 0,414 0,133 0,134 0,302 0,137 Gd 2,114 0,465 0,737 0,302 1,274 0,524 1,149 0,876 0,956 0,862 0,438 Tb - - - - 0,900 0,184 0,316 0,220 0,175 Ho 0,476 - - - 0,210 0,416 0,163 0,326 0,215 0,169 Tm - - - 0,220 0,230	Ce	19,300	2,081	3,399	18,210	12,450	13	3,040	9,101	15,540	4,907	5,760	10,610	5,224
Nd 9,54 1,507 2,188 2,391 5,706 0,023 4,841 7,77 2,831 2,905 5,298 2,397 Sm 2,434 - - - 1,301 1,567 - 1,808 0,779 0,828 0,963 - Eu 0,502 0,089 0,111 0,136 0,344 0,300 0,414 0,133 0,134 0,302 0,137 Gd 2,114 0,465 0,737 0,302 1,274 0,524 1,149 0,876 0,986 0,862 0,438 Tb - - - - - - 0,135 - 0,081 0,077 Er 0,876 0,279 0,174 0,271 0,371 0,322 0,285 0,210 0,416 0,163 0,326 0,228 0,178 - - - - - - - - - - - - - - - <td>Pr</td> <td>2,649</td> <td>-</td> <td>-</td> <td>0,847</td> <td>1,191</td> <td>1,</td> <td>769</td> <td>1,312</td> <td>2,064</td> <td>0,558</td> <td>-</td> <td>1,802</td> <td>0,536</td>	Pr	2,649	-	-	0,847	1,191	1,	769	1,312	2,064	0,558	-	1,802	0,536
Sm 2,434 - - 1,301 1,567 - 1,808 0,779 0,828 0,963 - Eu 0,502 0,089 0,141 0,136 0,344 0,300 0,414 0,133 0,134 0,302 0,137 Gd 2,114 0,465 0,737 0,302 1,223 1,224 1,547 0,524 1,149 0,676 0,956 0,482 0,438 Tb - - - - - - - - - - - - - - - - - - - 0,135 - 0,081 0,032 0,326 0,215 0,168 0,322 0,175 0,300 0,240 0,388 0,168 0,372 0,208 0,189 Lu 0,044 0,033 0,222 0,175 0,300 0,241 1,240 10,484 4,119 2,066 1,482 1,824 24,8456 31,179 24,474<	Nd	9,354	1,507	2,188	2,391	5,706	0,	023	4,841	7,797	2,831	2,905	5,298	2,397
Eu 0,502 0,089 0,141 0,136 0,300 0,414 0,133 0,134 0,302 0,137 Gd 2,114 0,465 0,737 0,302 1,224 1,274 0,524 1,149 0,876 0,862 0,488 0,483 Tb -	Sm	2,434	-	-	-	1,301	1,	567	-	1,808	0,779	0,828	0,963	-
Gd 2,114 0,465 0,737 0,302 1,223 1,274 0,524 1,149 0,876 0,956 0,862 0,438 Tb - 0,940 0,184 0,505 0,498 0,322 Ho 0,476 - - - - 0,205 - - - - - - - - - - - - - - 0,025 - - - - - - 0,220 0,308 0,586 0,618 0,918 0,014 0,054 0,034 0,056 0,618 - - - - 0,220 0,324 0,162 0,144 12,147 12,546 14,767	Eu	0,502	0,089	0,141	0,136	0,344	0,	360	0,300	0,414	0,133	0,134	0,302	0,137
Tb - 0.203 0.179 - 0.135 - 0.081 0.077 Er 0.897 0.279 0.174 0.221 0.332 0.285 0.210 0.416 0.163 0.326 0.215 0.169 Tm - - - - - - 0.025 -	Gd	2,114	0,465	0,737	0,302	1,223	1,:	274	0,524	1,149	0,876	0,956	0,862	0,438
Dy 1,417 0,239 0,213 0,324 0,907 0,799 - 0,940 0,184 0,505 0,498 0,322 Ho 0,476 - - - 0,203 0,179 - 0,135 - 0,081 0,077 Er 0,897 0,279 0,174 0,271 0,332 0,220 0,203 0,116 0,163 0,326 0,215 0,169 Tm - - - - 0,025 - - - - - - - - - - - - - - - - - - - 0,025 0,038 0,158 0,372 0,208 0,118 0,050 0,113 0,014 Total 98,085 6.18 8.693 24,944 28,466 31,179 21,474 37,474 13,006 14,787 25,986 11,862 Eu/Sm 0,2066 - - 0,224 </td <td>Tb</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Tb	-	-	-	-	-	-		-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dy	1,417	0,239	0,213	0,324	0,907	0,	799	-	0,940	0,184	0,505	0,498	0,322
Er 0,897 0,279 0,174 0,271 0,332 0,285 0,216 0,163 0,326 0,215 0,169 Tm - - - - 0,025 - 0,026 0,038 0,034 0,044 0,030 0,014 0,044 0,030 0,014 0,034 0,030 0,014 0,034 0,034 0,014 0,014 0,034 0,034 0,014 0,0450 0,493 0,314 5,246 LarLu/n 0,261 1,84 12,341 5,246 0,439 0,439 0,933 - 5,246 LarLu/n 0,229 0,171 0,162 0,314 - -	Но	0,476	-	-	-	-	0,2	203	0,179	-	0,135	-	0,081	0,077
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Er	0,897	0,279	0,174	0,271	0,332	0,2	285	0,210	0,416	0,163	0,326	0,215	0,169
Yb 0,810 0,337 0,232 0,175 0,360 0,290 0,280 0,308 0,372 0,208 0,198 Lu 0,044 0,038 0,038 0,014 0,014 0,053 0,034 0,050 0,013 0,014 Total 98,085 6,18 8,693 24,944 28,456 31,179 21,474 37,474 13,006 14,787 25,986 11,862 (La/Lu)n 5,744 0,942 1,173 1,850 3,786 12,40 10,464 4,119 2,066 1,844 12,341 5,246 Eu/Sm 0,206 - - 0,264 0,230 - 0,820 0,490 0,459 0,993 - Eu/Sm 0,206 - - 0,264 0,230 - 0,229 0,171 0,162 0,314 - Tierras Raras 167a 176a 178a 181a 201a 210a 210b 214a 214b 242a 224	Tm	-	-	-	-	-	-		0,025	-	-	-	-	-
Lu 0,044 0,038 0,032 0,038 0,038 0,014 0,014 0,013 0,013 0,013 0,014 Total 98,085 6,18 8,693 24,944 28,456 31,179 21,474 37,474 13,006 14,787 25,986 11,862 (La/Lu)n 5,744 0,942 1,173 1,850 3,786 12,40 10,464 4,119 2,066 1,844 12,341 5,246 Eu/Eu* 0,661 - - 0,264 0,230 - 0,229 0,171 0,162 0,314 - Eu/Sm 0,206 - - - 0,264 0,230 - 0,229 0,171 0,162 0,314 - Tierras Raras 167a 176a 181a 201a 201b 210a 210b 214a 214b 224a 224b Li I I I II III III III III III III	Yb	0,810	0,337	0,222	0,175	0,360	0,2	290	0,280	0,308	0,158	0,372	0,208	0,198
Total 98,085 6,18 8,693 24,944 28,456 31,179 21,474 37,474 13,006 14,787 29,986 11,862 (La/Lu)n 5,744 0,942 1,173 1,850 3,786 12,40 10,464 4,119 2,066 1,844 12,341 5,246 Eu/Ew 0,206 - - 0,224 0,755 - 0,820 0,459 0,993 - Tierras Raras 167a 176a 178a 181a 201a 201b 210a 210b 214a 214b 224a 224b I I I II II III IIII IIII IIIIII	Lu	0,044	0,038	0,042	0,038	0,038	0,0	014	0,014	0,053	0,034	0,050	0,013	0,014
La/Lu)n 5,744 0,942 1,173 1,850 3,786 12,40 10,464 4,119 2,066 1,844 12,341 5,246 Eu/Eu* 0,661 - - - 0,821 0,755 - 0,820 0,490 0,459 0,993 - Eu/Sm 0,206 - - 0,264 0,230 - 0,229 0,171 0,162 0,314 - Tierras Raras 167a 176a 178a 181a 201b 210b 210b 214a 214b 224a 224b La 2,783 4,012 5,062 1,146 3,713 6,042 2,039 3,037 3,689 3,170 2,697 Ce 7,234 7,639 10,920 2,588 8,869 13,750 4,146 7,704 5,638 8,211 6,714 5,775 Pr 0,298 0,814 1,055 0,303 1,542 - 0,632 0,851 0,635 <td< td=""><td>Total</td><td>98,085</td><td>6,18</td><td>8,693</td><td>24,944</td><td>28,456</td><td>31</td><td>,179</td><td>21,474</td><td>37,474</td><td>13,006</td><td>14,787</td><td>25,986</td><td>11,862</td></td<>	Total	98,085	6,18	8,693	24,944	28,456	31	,179	21,474	37,474	13,006	14,787	25,986	11,862
Lu/Lu* 0.661 - - 0.821 0.755 - 0.820 0.490 0.459 0.993 - Eu/Sm 0.206 - - - 0.264 0.230 - 0.229 0.171 0.162 0.314 - Tierras Raras 167a 176a 178a 181a 201a 201b 210b 214a 214b 224a 224b I I I I II I III IIII IIII IIII IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(La/Lu)n	5,744	0,942	1,1/3	1,850	3,786	12	2,40	10,464	4,119	2,066	1,844	12,341	5,246
Eu/Sm 0,206 - - 0,264 0,230 - 0,229 0,171 0,162 0,314 - Tierras Raras 167a 176a 178a 181a 201a 201b 210a 210b 214a 214b 224a 224b La 2,783 4,012 5,062 1,146 3,713 6,042 2,039 3,037 3,087 3,689 3,170 2,697 Ce 7,234 7,639 10,920 2,588 8,869 13,750 4,146 7,704 5,638 8,211 6,714 5,775 Pr 0,298 0,814 1,055 0,303 1,542 - 0,632 0,635 1,601 1,300 1,451 Nd 3,229 3,654 5,097 1,304 5,282 7,377 2,151 3,714 2,557 3,828 2,858 2,493 Sm 0,610 0,486 1,606 0,393 1,055 1,479 0,656 1,149	Eu/Eu*	0,661	-	-	-	0,821	0,	/55	-	0,820	0,490	0,459	0,993	-
Tierras Raras 167a 176a 178a 181a 201a 201b 210a 210b 214a 214b 224a 224b I I I I I I I II II II III IIIII IIII IIII	Eu/Sm	0,206	-	-	-	0,264	0,2	230	-	0,229	0,171	0,162	0,314	-
Initials Raids Initials	Tiorrag Parag	1670	1760	1700	1010	2010	20	116	2100	210h	2140	214h	2240	224h
La 2,783 4,012 5,062 1,146 3,713 6,042 2,039 3,037 3,087 3,689 3,170 2,697 Ce 7,234 7,639 10,920 2,588 8,869 13,750 4,146 7,704 5,638 8,211 6,714 5,775 Pr 0,298 0,814 1,055 0,303 1,542 - 0,632 0,655 1,601 1,300 1,451 Nd 3,229 3,654 5,097 1,304 5,282 7,377 2,151 3,714 2,557 3,828 2,858 2,493 Sm 0,610 0,486 1,606 0,393 1,055 1,797 0,650 1,479 0,656 1,189 0,937 0,415 Eu 0,198 0,283 0,314 0,050 0,271 0,391 0,130 0,245 0,35 0,285 0,219 0,189 Gd 0,939 1,024 1,723 0,154 0,923 1,192 0		107a	170a	170a	1014	2014	20		210a		214a III	2140	1	1
La 2,133 3,617 3,637 3,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,637 5,638 8,211 6,714 5,775 Pr 0,298 0,814 1,055 0,303 1,542 - 0,632 0,851 0,635 1,601 1,300 1,451 Nd 3,229 3,654 5,097 1,304 5,282 7,377 2,151 3,714 2,557 3,828 2,858 2,493 Sm 0,610 0,486 1,606 0,393 1,055 1,797 0,650 1,479 0,656 1,189 0,937 0,415 Eu 0,198 0,283 0,314 0,050 0,271 0,391 0,130 0,245 0,35 0,285 0,219 0,189 Gd 0,939 1,024 1,723 0,154 0,923 1,192	la	2 783	4 012	5.062	1 146	3 713	6	042	2 030	3 037	3 087	3 689	3 170	2 607
Pr 0,298 0,814 1,055 0,303 1,542 - 0,632 0,851 0,635 1,601 1,300 1,451 Nd 3,229 3,654 5,097 1,304 5,282 7,377 2,151 3,714 2,557 3,828 2,858 2,493 Sm 0,610 0,486 1,606 0,393 1,055 1,797 0,650 1,479 0,6656 1,189 0,937 0,415 Eu 0,198 0,283 0,314 0,050 0,271 0,391 0,130 0,245 0,35 0,285 0,219 0,189 Gd 0,939 1,024 1,723 0,154 0,923 1,192 0,387 0,794 0,467 0,770 0,415 0,246 Tb<		7 234	7 630	10 020	1,140	8 860	13	3 750	2,039	7 704	5,638	8 211	6 714	5 775
Nd 3,200 0,011 1,000 1,000 1,012 - 0,002 0,001 0,000 1,001 1,002 1,002 1,002 1,002 1,002 1,002 1,002 1,002<	Pr	0.209	0.814	1 0,920	0 303	1 542	- 10	,,,,,00	0.632	0.851	0.635	1 601	1 300	1 451
Number 0,610 0,486 1,606 0,393 1,057 2,101 2,101 2,101 2,007 3,020 2,030 2,493 Sm 0,610 0,486 1,606 0,393 1,057 1,797 0,650 1,479 0,656 1,189 0,937 0,415 Eu 0,198 0,283 0,314 0,050 0,271 0,391 0,130 0,245 0,355 0,285 0,219 0,189 Gd 0,939 1,024 1,723 0,154 0,923 1,192 0,387 0,794 0,467 0,770 0,415 0,246 Tb - <t< td=""><td>Nd</td><td>3 220</td><td>3 654</td><td>5 007</td><td>1.30/</td><td>5 282</td><td>7</td><td>377</td><td>2 151</td><td>3 714</td><td>2 557</td><td>3 828</td><td>2 858</td><td>2 493</td></t<>	Nd	3 220	3 654	5 007	1.30/	5 282	7	377	2 151	3 714	2 557	3 828	2 858	2 493
Eu 0,198 0,283 0,314 0,050 0,271 0,391 0,130 0,245 0,355 0,285 0,219 0,189 Gd 0,939 1,024 1,723 0,154 0,923 1,192 0,387 0,794 0,467 0,770 0,415 0,246 Tb - <td>Sm</td> <td>0.610</td> <td>0 486</td> <td>1 606</td> <td>0.393</td> <td>1 055</td> <td>1</td> <td>797</td> <td>0.650</td> <td>1 479</td> <td>0.656</td> <td>1 189</td> <td>0.937</td> <td>0.415</td>	Sm	0.610	0 486	1 606	0.393	1 055	1	797	0.650	1 479	0.656	1 189	0.937	0.415
Gd 0,100 0,120 0,111 0,000 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,121 0,100 0,100 0,115 0,216 0,115 0,246 Tb -	Fu	0,010	0,400	0.314	0,050	0.271	0	391	0,000	0.245	0.35	0.285	0,007	0,410
Tb -	Gd	0,939	1 024	1 723	0 154	0.923	1	192	0.387	0 794	0 467	0,770	0 415	0.246
Dy 0,205 0,314 0,817 0,436 0,737 0,644 0,650 0,647 0,675 0,727 0,652 0,310 Ho - 0,152 0,227 0,183 - - 0,156 - 0,170 - - Er 0,162 0,343 0,477 0,689 0,285 0,294 0,212 0,313 0,340 0,273 0,284 0,107 Tm - - 0,101 - <td< td=""><td>Th</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>102</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	Th	-	-	-	-	-		102	-	-	-	-	-	-
Ho - 0,152 0,227 0,183 - - 0,156 - 0,170 - - Er 0,162 0,343 0,477 0,689 0,285 0,294 0,212 0,313 0,340 0,273 0,284 0,107 Tm - - 0,101 -	Dv	0.205	0.314	0.817	0 4 3 6	0.737	0	644	0.650	0.647	0.675	0.727	0.652	0.310
Er 0,162 0,343 0,477 0,689 0,285 0,294 0,212 0,313 0,340 0,273 0,284 0,107 Tm - - 0,101 -	Ho	-	0.152	0.227	0 183	-	-		-	0.156	-	0.170	-	-
Tm - - 0,101 - <td>Er</td> <td>0.162</td> <td>0.343</td> <td>0.477</td> <td>0.689</td> <td>0.285</td> <td>0</td> <td>294</td> <td>0.212</td> <td>0.313</td> <td>0.340</td> <td>0.273</td> <td>0.284</td> <td>0.107</td>	Er	0.162	0.343	0.477	0.689	0.285	0	294	0.212	0.313	0.340	0.273	0.284	0.107
Yb 0,203 0,327 0,527 0,727 0,220 0,204 0,176 0,274 0,255 0,303 0,218 0,082 Lu 0,062 0,048 0,027 0,111 0,023 - 0,026 - 0,027 0,016 0,032 0,033 Total 15,923 19,086 27,852 8,185 22,92 31,691 11,199 19,214 14,687 21,062 16,799 13,798 (La/Lu)n 1,403 2,612 5,859 0,323 5,045 - 2,451 - 3,573 7,205 3,096 2,554 Eu/Eu* 0,835 0,196 0,573 0,520 0,821 0,768 0,731 0,624 1,84 0,853 0,927 1,667 Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,20 0,166 0,534 0,240 0,234 0,455	Tm	-	-	-	0 101	-	-	_• '	-	-	-	-	-	-
Lu 0,062 0,048 0,027 0,111 0,023 - 0,026 - 0,027 0,016 0,032 0,033 Total 15,923 19,086 27,852 8,185 22,92 31,691 11,199 19,214 14,687 21,062 16,799 13,798 (La/Lu)n 1,403 2,612 5,859 0,323 5,045 - 2,451 - 3,573 7,205 3,096 2,554 Eu/Eu* 0,835 0,196 0,573 0,520 0,821 0,768 0,731 0,624 1,84 0,853 0,927 1,667 Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,20 0,166 0,534 0,240 0,234 0,455	Yb	0.203	0.327	0.527	0 727	0.220	0	204	0.176	0.274	0.255	0.303	0.218	0.082
Total 15,923 19,086 27,852 8,185 22,92 31,691 11,199 19,214 14,687 21,062 16,799 13,798 (La/Lu)n 1,403 2,612 5,859 0,323 5,045 - 2,451 - 3,573 7,205 3,096 2,554 Eu/Eu* 0,835 0,196 0,573 0,520 0,821 0,768 0,731 0,624 1,84 0,853 0,927 1,667 Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,20 0,166 0,534 0,240 0,234 0,455	Lu	0.062	0.048	0.027	0.111	0.023	-	_• '	0.026	-	0.027	0.016	0.032	0.033
(La/Lu)n 1,403 2,612 5,859 0,323 5,045 - 2,451 - 3,573 7,205 3,096 2,554 Eu/Eu* 0,835 0,196 0,573 0,520 0,821 0,768 0,731 0,624 1,84 0,853 0,927 1,667 Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,200 0,166 0,534 0,240 0,234 0,455	Total	15,923	19.086	27.852	8.185	22.92	31	1.691	11.199	19.214	14.687	21.062	16,799	13,798
Eu/Eu* 0,835 0,196 0,573 0,520 0,821 0,768 0,731 0,624 1,84 0,853 0,927 1,667 Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,20 0,166 0,534 0,240 0,234 0,455	(La/Lu)n	1,403	2,612	5,859	0.323	5,045	-		2,451	-	3,573	7,205	3,096	2,554
Eu/Sm 0,325 0,582 0,196 0,127 0,257 0,218 0,20 0,166 0,534 0,240 0,234 0,455	Èu/Eu [*]	0,835	0,196	0,573	0.520	0,821	0.	768	0,731	0,624	1,84	0,853	0,927	1,667
	Eu/Sm	0,325	0,582	0,196	0,127	0,257	0,	218	0,20	0,166	0,534	0,240	0,234	0,455

Tabla 2. Contenidos de tierras raras en los intrusivos. / Table 2. Rare earth contents in the intrusive.

I: Trondhjemitas-tonalitas, II: Granodioritas-granitos, III: Granito pre-tectónico Incauca.

Tabla 3

Muestra	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	Monacita/circón
					(°) Edades (Ma)
Trondhjemitas					
1 PAY-2	27,4	608,2	0,131	0,70331	466+/-1
2 PAY-2	21,5	529,2	0,117	0,70341	468+/-1
3 PAY-2	21,8	470,7	0,134	0,70347	
4 PAY-2	20,9	665,4	0,091	0,70348	
5 PAY-2	26,0	516,8	0,146	0,70359	
7 AGCAL-1	20,1	487,8	0,119	0,70339	
8 INCA-1	21,4	515,3	0,120	0,70394	479+/-1
9 VALL-2	5,0	594,6	0,025	0,70326	
10 VALL-2	16,7	530,2	0,091	0,70327	467+/-1
11 VALL-2	8,5	556,5	0,044	0,70330	468+/-1
12 VALL-2	5,3	544,6	0,028	0,70328	
Alcali-granitos?					
14 PAY-3	281	46,5	17,68	0,71275	469
15 LACAB-1	208	56,8	10,66	0,71327	

Relaciones iniciales (RI) 87Sr/86Sr de las trondhjemitas, calculadas de las edades monacita/circón (°).

Tabla 4

Intrusivo	Litología	Carácter	Mineral	Edad Ma	Autor
Las Cabritas	granito	intrusivo	÷5	;?	
Cachi	Tonalita/trondhjemita	intrusivo	;?	;?	
La Paya	Álcali-granito	Intrusivo-corneana	monacita	468	Lork et al. 1990
El Alto	tonalita	intrusivo	monacita	468	Lork y Bahlburg (1993)
El Alto	tonalita	intrusivo	monacita	466	Lork y Bahlburg (1993)
Las Pampitas	trondhjemita	intrusivo	monacita	467?	Lork
El Vallecito	Trondhjemita	intrusivo	circón	488+14/-16	Lork
El Vallecito	trondhjemita	intrusivo	monacita	467.5	Lork
Aguas Calientes	trondhjemita	intrusivo	monacita	481	Lork (inédito)
Aguas Calientes	trondhjemita	intrusivo	monacita	479	Lork (inédito)
Tres Tetas	trondhjemita	intrusivo	monacita	478	Lork (inédito)
Brealito	granito	intrusivo	monacita	475	Lork y Bahlburg (1993)
Brealito	granito	intrusivo	monacita	472	Lork y Bahlburg (1993)
Tacuil	granito	intrusivo	monacita	472	Lork y Bahlburg (1993)
Incauca	Tonalita/trondhjemita	Pre-tectónico	Rb-Sr	479+/-1	Lork (inédito)
Pumayaco	leucogranito	Sin-tectónico	circón	466,5	Sola et al. 2006
La Angostura	granito	Post-tectónico	circón	453+/-25	Lork et al. (1989)
La Angostura	granito	Post-tectónico	monacita	462+/-1	Lork et al. (1989)
Rancagua	pizarra	contacto	K-Ar	472-451	Adams et al. 1990
Finca Colomé	basalto	subvolcánico	circón	496+/-3	Hauser, 2011

BREAL-1 40-50 1 100-125 2 80-100 3 60-80 4 50-60	BREAL-1 40-50 1 100-125 2 80-100 3 60-80	9 9 9 40-50 1 100-125 2 80-100	9 40-50 9 40-50 1 100-125	9 40-50 BREAL-1	9 40-50	9 40-50	0000	8 60-80	7 90-100	6 40-50	5 60-80	4 90-100	3 40-50	2 60-80	1 90-100	PAYS-1		Circón	Figs.17a,b Gran.	Nº en Frac.
a,b,c a,b,c	a,b,c a,b,c	a,b,c a,b,c	a,b,c				c,f,h	c,f,h	c,f,h	a,d,g,l	a,d,g,l	a,d,g,l	c,e,k	c,e,k	c,e,k					Muestra
3,3 3		3,5	7,5	9,2			0,6	0,75	1,9	1,2	1,59	<u></u> 3,1	2,8	3,33 3	8,2				mg	Peso
	488	509	467	439			2182	2191	1865	422	389	328	542	433	367		ppm	Ę		Concent
	44	43	43	40			228	231	214	42	37	31	74	59	49		ppm	Pbt		traciones
	169	180	173	166			907	903	846	167	146	123	295	232	139		(nmol/g)	²⁰⁶ Pb _{Rad}		
6101	6592	6701	6907	5756			2466	2153	2531	14525	5584	3653	10229	5176	6531			²⁰⁶ Pb/ ²⁰⁴ Pb		Relaciones a
10000	0,06425	0,06569	0,06631	0,06773			0,08252	0,08252	0,08736	0,06334	0,06265	0,06451	0,08239	0,08089	0,08106			²⁰⁷ Pb/ ²⁰⁶ Pb		atómicas obse
000000	0,19448	0,09691	0,14108	0,10455			0,13127	0,13127	0,13193	0,14566	0,16247	0,16738	0,1339	0,14042	0,14323		Pb	²⁰⁸ Pb/ ²⁰⁶		rvadas
	0,08303	0,08507	0,08868	0,09063			0,09971	0,09873	0,10873	0,09465	0,08961	0,09006	0,13055	0,12870	0,12648			²⁰⁶ Pb/ ²³⁸ U	Pb común y b	Relaciones at
0 07000	0,71044	0,74521	0,78528	0,81501			1,05522	1,03215	1,22608	0,81355	0,74206	0,75186	1,45819	1,38671	1,37588			²⁰⁷ Pb/ ²³⁵ U	anco	ómicas corregi
7002 0	0,06206	0,06353	0,06422	0,06522			0,07676	0,07582	0,08179	0,06234	0,06006	0,06055	0,08101	0,07815	0,07890			²⁰⁷ Pb/ ²⁰⁶ Pb		das para
407	514	526	548	559			613	607	665	583	553	556	791	781	768			²⁰⁶ Pb/ ²³⁸ U		Edades apa
523	545	565	588	605			731	720	813	604	564	569	913	883	879			²⁰⁷ Pb/ ²³⁵ U		rentes (Ma)
638	676	726	749	782			1115	1090	1240	686	606	623	1222	1151	1170			²⁰⁷ Pb/ ²⁰⁶ Pb		

a: idiomorfos. b: claros. c: rosados. d: idiomorfos con débil redondeamiento. e; oscuros. f: anaranjados. g: marrón claro.

La Paya (PAYS-1 – Figura 17A). El Brealito (BREAL-1 - Figura 17B).

Tabla 5